summaryrefslogtreecommitdiff
path: root/2.3-1/src/fortran/lapack/dlarfg.f
blob: be98188001d778be0e49c8309c318e375c9fa2d5 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
      SUBROUTINE DLARFG( N, ALPHA, X, INCX, TAU )
*
*  -- LAPACK auxiliary routine (version 3.1) --
*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd..
*     November 2006
*
*     .. Scalar Arguments ..
      INTEGER            INCX, N
      DOUBLE PRECISION   ALPHA, TAU
*     ..
*     .. Array Arguments ..
      DOUBLE PRECISION   X( * )
*     ..
*
*  Purpose
*  =======
*
*  DLARFG generates a real elementary reflector H of order n, such
*  that
*
*        H * ( alpha ) = ( beta ),   H' * H = I.
*            (   x   )   (   0  )
*
*  where alpha and beta are scalars, and x is an (n-1)-element real
*  vector. H is represented in the form
*
*        H = I - tau * ( 1 ) * ( 1 v' ) ,
*                      ( v )
*
*  where tau is a real scalar and v is a real (n-1)-element
*  vector.
*
*  If the elements of x are all zero, then tau = 0 and H is taken to be
*  the unit matrix.
*
*  Otherwise  1 <= tau <= 2.
*
*  Arguments
*  =========
*
*  N       (input) INTEGER
*          The order of the elementary reflector.
*
*  ALPHA   (input/output) DOUBLE PRECISION
*          On entry, the value alpha.
*          On exit, it is overwritten with the value beta.
*
*  X       (input/output) DOUBLE PRECISION array, dimension
*                         (1+(N-2)*abs(INCX))
*          On entry, the vector x.
*          On exit, it is overwritten with the vector v.
*
*  INCX    (input) INTEGER
*          The increment between elements of X. INCX > 0.
*
*  TAU     (output) DOUBLE PRECISION
*          The value tau.
*
*  =====================================================================
*
*     .. Parameters ..
      DOUBLE PRECISION   ONE, ZERO
      PARAMETER          ( ONE = 1.0D+0, ZERO = 0.0D+0 )
*     ..
*     .. Local Scalars ..
      INTEGER            J, KNT
      DOUBLE PRECISION   BETA, RSAFMN, SAFMIN, XNORM
*     ..
*     .. External Functions ..
      DOUBLE PRECISION   DLAMCH, DLAPY2, DNRM2
      EXTERNAL           DLAMCH, DLAPY2, DNRM2
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          ABS, SIGN
*     ..
*     .. External Subroutines ..
      EXTERNAL           DSCAL
*     ..
*     .. Executable Statements ..
*
      IF( N.LE.1 ) THEN
         TAU = ZERO
         RETURN
      END IF
*
      XNORM = DNRM2( N-1, X, INCX )
*
      IF( XNORM.EQ.ZERO ) THEN
*
*        H  =  I
*
         TAU = ZERO
      ELSE
*
*        general case
*
         BETA = -SIGN( DLAPY2( ALPHA, XNORM ), ALPHA )
         SAFMIN = DLAMCH( 'S' ) / DLAMCH( 'E' )
         IF( ABS( BETA ).LT.SAFMIN ) THEN
*
*           XNORM, BETA may be inaccurate; scale X and recompute them
*
            RSAFMN = ONE / SAFMIN
            KNT = 0
   10       CONTINUE
            KNT = KNT + 1
            CALL DSCAL( N-1, RSAFMN, X, INCX )
            BETA = BETA*RSAFMN
            ALPHA = ALPHA*RSAFMN
            IF( ABS( BETA ).LT.SAFMIN )
     $         GO TO 10
*
*           New BETA is at most 1, at least SAFMIN
*
            XNORM = DNRM2( N-1, X, INCX )
            BETA = -SIGN( DLAPY2( ALPHA, XNORM ), ALPHA )
            TAU = ( BETA-ALPHA ) / BETA
            CALL DSCAL( N-1, ONE / ( ALPHA-BETA ), X, INCX )
*
*           If ALPHA is subnormal, it may lose relative accuracy
*
            ALPHA = BETA
            DO 20 J = 1, KNT
               ALPHA = ALPHA*SAFMIN
   20       CONTINUE
         ELSE
            TAU = ( BETA-ALPHA ) / BETA
            CALL DSCAL( N-1, ONE / ( ALPHA-BETA ), X, INCX )
            ALPHA = BETA
         END IF
      END IF
*
      RETURN
*
*     End of DLARFG
*
      END