summaryrefslogtreecommitdiff
path: root/2.3-1/src/fortran/lapack/dlaqr5.f
blob: 1785757272d8b60f43b2d8f303a70a565014fc06 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
      SUBROUTINE DLAQR5( WANTT, WANTZ, KACC22, N, KTOP, KBOT, NSHFTS,
     $                   SR, SI, H, LDH, ILOZ, IHIZ, Z, LDZ, V, LDV, U,
     $                   LDU, NV, WV, LDWV, NH, WH, LDWH )
*
*  -- LAPACK auxiliary routine (version 3.1) --
*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd..
*     November 2006
*
*     .. Scalar Arguments ..
      INTEGER            IHIZ, ILOZ, KACC22, KBOT, KTOP, LDH, LDU, LDV,
     $                   LDWH, LDWV, LDZ, N, NH, NSHFTS, NV
      LOGICAL            WANTT, WANTZ
*     ..
*     .. Array Arguments ..
      DOUBLE PRECISION   H( LDH, * ), SI( * ), SR( * ), U( LDU, * ),
     $                   V( LDV, * ), WH( LDWH, * ), WV( LDWV, * ),
     $                   Z( LDZ, * )
*     ..
*
*     This auxiliary subroutine called by DLAQR0 performs a
*     single small-bulge multi-shift QR sweep.
*
*      WANTT  (input) logical scalar
*             WANTT = .true. if the quasi-triangular Schur factor
*             is being computed.  WANTT is set to .false. otherwise.
*
*      WANTZ  (input) logical scalar
*             WANTZ = .true. if the orthogonal Schur factor is being
*             computed.  WANTZ is set to .false. otherwise.
*
*      KACC22 (input) integer with value 0, 1, or 2.
*             Specifies the computation mode of far-from-diagonal
*             orthogonal updates.
*        = 0: DLAQR5 does not accumulate reflections and does not
*             use matrix-matrix multiply to update far-from-diagonal
*             matrix entries.
*        = 1: DLAQR5 accumulates reflections and uses matrix-matrix
*             multiply to update the far-from-diagonal matrix entries.
*        = 2: DLAQR5 accumulates reflections, uses matrix-matrix
*             multiply to update the far-from-diagonal matrix entries,
*             and takes advantage of 2-by-2 block structure during
*             matrix multiplies.
*
*      N      (input) integer scalar
*             N is the order of the Hessenberg matrix H upon which this
*             subroutine operates.
*
*      KTOP   (input) integer scalar
*      KBOT   (input) integer scalar
*             These are the first and last rows and columns of an
*             isolated diagonal block upon which the QR sweep is to be
*             applied. It is assumed without a check that
*                       either KTOP = 1  or   H(KTOP,KTOP-1) = 0
*             and
*                       either KBOT = N  or   H(KBOT+1,KBOT) = 0.
*
*      NSHFTS (input) integer scalar
*             NSHFTS gives the number of simultaneous shifts.  NSHFTS
*             must be positive and even.
*
*      SR     (input) DOUBLE PRECISION array of size (NSHFTS)
*      SI     (input) DOUBLE PRECISION array of size (NSHFTS)
*             SR contains the real parts and SI contains the imaginary
*             parts of the NSHFTS shifts of origin that define the
*             multi-shift QR sweep.
*
*      H      (input/output) DOUBLE PRECISION array of size (LDH,N)
*             On input H contains a Hessenberg matrix.  On output a
*             multi-shift QR sweep with shifts SR(J)+i*SI(J) is applied
*             to the isolated diagonal block in rows and columns KTOP
*             through KBOT.
*
*      LDH    (input) integer scalar
*             LDH is the leading dimension of H just as declared in the
*             calling procedure.  LDH.GE.MAX(1,N).
*
*      ILOZ   (input) INTEGER
*      IHIZ   (input) INTEGER
*             Specify the rows of Z to which transformations must be
*             applied if WANTZ is .TRUE.. 1 .LE. ILOZ .LE. IHIZ .LE. N
*
*      Z      (input/output) DOUBLE PRECISION array of size (LDZ,IHI)
*             If WANTZ = .TRUE., then the QR Sweep orthogonal
*             similarity transformation is accumulated into
*             Z(ILOZ:IHIZ,ILO:IHI) from the right.
*             If WANTZ = .FALSE., then Z is unreferenced.
*
*      LDZ    (input) integer scalar
*             LDA is the leading dimension of Z just as declared in
*             the calling procedure. LDZ.GE.N.
*
*      V      (workspace) DOUBLE PRECISION array of size (LDV,NSHFTS/2)
*
*      LDV    (input) integer scalar
*             LDV is the leading dimension of V as declared in the
*             calling procedure.  LDV.GE.3.
*
*      U      (workspace) DOUBLE PRECISION array of size
*             (LDU,3*NSHFTS-3)
*
*      LDU    (input) integer scalar
*             LDU is the leading dimension of U just as declared in the
*             in the calling subroutine.  LDU.GE.3*NSHFTS-3.
*
*      NH     (input) integer scalar
*             NH is the number of columns in array WH available for
*             workspace. NH.GE.1.
*
*      WH     (workspace) DOUBLE PRECISION array of size (LDWH,NH)
*
*      LDWH   (input) integer scalar
*             Leading dimension of WH just as declared in the
*             calling procedure.  LDWH.GE.3*NSHFTS-3.
*
*      NV     (input) integer scalar
*             NV is the number of rows in WV agailable for workspace.
*             NV.GE.1.
*
*      WV     (workspace) DOUBLE PRECISION array of size
*             (LDWV,3*NSHFTS-3)
*
*      LDWV   (input) integer scalar
*             LDWV is the leading dimension of WV as declared in the
*             in the calling subroutine.  LDWV.GE.NV.
*
*
*     ================================================================
*     Based on contributions by
*        Karen Braman and Ralph Byers, Department of Mathematics,
*        University of Kansas, USA
*
*     ============================================================
*     Reference:
*
*     K. Braman, R. Byers and R. Mathias, The Multi-Shift QR
*     Algorithm Part I: Maintaining Well Focused Shifts, and
*     Level 3 Performance, SIAM Journal of Matrix Analysis,
*     volume 23, pages 929--947, 2002.
*
*     ============================================================
*     .. Parameters ..
      DOUBLE PRECISION   ZERO, ONE
      PARAMETER          ( ZERO = 0.0d0, ONE = 1.0d0 )
*     ..
*     .. Local Scalars ..
      DOUBLE PRECISION   ALPHA, BETA, H11, H12, H21, H22, REFSUM,
     $                   SAFMAX, SAFMIN, SCL, SMLNUM, SWAP, TST1, TST2,
     $                   ULP
      INTEGER            I, I2, I4, INCOL, J, J2, J4, JBOT, JCOL, JLEN,
     $                   JROW, JTOP, K, K1, KDU, KMS, KNZ, KRCOL, KZS,
     $                   M, M22, MBOT, MEND, MSTART, MTOP, NBMPS, NDCOL,
     $                   NS, NU
      LOGICAL            ACCUM, BLK22, BMP22
*     ..
*     .. External Functions ..
      DOUBLE PRECISION   DLAMCH
      EXTERNAL           DLAMCH
*     ..
*     .. Intrinsic Functions ..
*
      INTRINSIC          ABS, DBLE, MAX, MIN, MOD
*     ..
*     .. Local Arrays ..
      DOUBLE PRECISION   VT( 3 )
*     ..
*     .. External Subroutines ..
      EXTERNAL           DGEMM, DLABAD, DLACPY, DLAQR1, DLARFG, DLASET,
     $                   DTRMM
*     ..
*     .. Executable Statements ..
*
*     ==== If there are no shifts, then there is nothing to do. ====
*
      IF( NSHFTS.LT.2 )
     $   RETURN
*
*     ==== If the active block is empty or 1-by-1, then there
*     .    is nothing to do. ====
*
      IF( KTOP.GE.KBOT )
     $   RETURN
*
*     ==== Shuffle shifts into pairs of real shifts and pairs
*     .    of complex conjugate shifts assuming complex
*     .    conjugate shifts are already adjacent to one
*     .    another. ====
*
      DO 10 I = 1, NSHFTS - 2, 2
         IF( SI( I ).NE.-SI( I+1 ) ) THEN
*
            SWAP = SR( I )
            SR( I ) = SR( I+1 )
            SR( I+1 ) = SR( I+2 )
            SR( I+2 ) = SWAP
*
            SWAP = SI( I )
            SI( I ) = SI( I+1 )
            SI( I+1 ) = SI( I+2 )
            SI( I+2 ) = SWAP
         END IF
   10 CONTINUE
*
*     ==== NSHFTS is supposed to be even, but if is odd,
*     .    then simply reduce it by one.  The shuffle above
*     .    ensures that the dropped shift is real and that
*     .    the remaining shifts are paired. ====
*
      NS = NSHFTS - MOD( NSHFTS, 2 )
*
*     ==== Machine constants for deflation ====
*
      SAFMIN = DLAMCH( 'SAFE MINIMUM' )
      SAFMAX = ONE / SAFMIN
      CALL DLABAD( SAFMIN, SAFMAX )
      ULP = DLAMCH( 'PRECISION' )
      SMLNUM = SAFMIN*( DBLE( N ) / ULP )
*
*     ==== Use accumulated reflections to update far-from-diagonal
*     .    entries ? ====
*
      ACCUM = ( KACC22.EQ.1 ) .OR. ( KACC22.EQ.2 )
*
*     ==== If so, exploit the 2-by-2 block structure? ====
*
      BLK22 = ( NS.GT.2 ) .AND. ( KACC22.EQ.2 )
*
*     ==== clear trash ====
*
      IF( KTOP+2.LE.KBOT )
     $   H( KTOP+2, KTOP ) = ZERO
*
*     ==== NBMPS = number of 2-shift bulges in the chain ====
*
      NBMPS = NS / 2
*
*     ==== KDU = width of slab ====
*
      KDU = 6*NBMPS - 3
*
*     ==== Create and chase chains of NBMPS bulges ====
*
      DO 220 INCOL = 3*( 1-NBMPS ) + KTOP - 1, KBOT - 2, 3*NBMPS - 2
         NDCOL = INCOL + KDU
         IF( ACCUM )
     $      CALL DLASET( 'ALL', KDU, KDU, ZERO, ONE, U, LDU )
*
*        ==== Near-the-diagonal bulge chase.  The following loop
*        .    performs the near-the-diagonal part of a small bulge
*        .    multi-shift QR sweep.  Each 6*NBMPS-2 column diagonal
*        .    chunk extends from column INCOL to column NDCOL
*        .    (including both column INCOL and column NDCOL). The
*        .    following loop chases a 3*NBMPS column long chain of
*        .    NBMPS bulges 3*NBMPS-2 columns to the right.  (INCOL
*        .    may be less than KTOP and and NDCOL may be greater than
*        .    KBOT indicating phantom columns from which to chase
*        .    bulges before they are actually introduced or to which
*        .    to chase bulges beyond column KBOT.)  ====
*
         DO 150 KRCOL = INCOL, MIN( INCOL+3*NBMPS-3, KBOT-2 )
*
*           ==== Bulges number MTOP to MBOT are active double implicit
*           .    shift bulges.  There may or may not also be small
*           .    2-by-2 bulge, if there is room.  The inactive bulges
*           .    (if any) must wait until the active bulges have moved
*           .    down the diagonal to make room.  The phantom matrix
*           .    paradigm described above helps keep track.  ====
*
            MTOP = MAX( 1, ( ( KTOP-1 )-KRCOL+2 ) / 3+1 )
            MBOT = MIN( NBMPS, ( KBOT-KRCOL ) / 3 )
            M22 = MBOT + 1
            BMP22 = ( MBOT.LT.NBMPS ) .AND. ( KRCOL+3*( M22-1 ) ).EQ.
     $              ( KBOT-2 )
*
*           ==== Generate reflections to chase the chain right
*           .    one column.  (The minimum value of K is KTOP-1.) ====
*
            DO 20 M = MTOP, MBOT
               K = KRCOL + 3*( M-1 )
               IF( K.EQ.KTOP-1 ) THEN
                  CALL DLAQR1( 3, H( KTOP, KTOP ), LDH, SR( 2*M-1 ),
     $                         SI( 2*M-1 ), SR( 2*M ), SI( 2*M ),
     $                         V( 1, M ) )
                  ALPHA = V( 1, M )
                  CALL DLARFG( 3, ALPHA, V( 2, M ), 1, V( 1, M ) )
               ELSE
                  BETA = H( K+1, K )
                  V( 2, M ) = H( K+2, K )
                  V( 3, M ) = H( K+3, K )
                  CALL DLARFG( 3, BETA, V( 2, M ), 1, V( 1, M ) )
*
*                 ==== A Bulge may collapse because of vigilant
*                 .    deflation or destructive underflow.  (The
*                 .    initial bulge is always collapsed.) Use
*                 .    the two-small-subdiagonals trick to try
*                 .    to get it started again. If V(2,M).NE.0 and
*                 .    V(3,M) = H(K+3,K+1) = H(K+3,K+2) = 0, then
*                 .    this bulge is collapsing into a zero
*                 .    subdiagonal.  It will be restarted next
*                 .    trip through the loop.)
*
                  IF( V( 1, M ).NE.ZERO .AND.
     $                ( V( 3, M ).NE.ZERO .OR. ( H( K+3,
     $                K+1 ).EQ.ZERO .AND. H( K+3, K+2 ).EQ.ZERO ) ) )
     $                 THEN
*
*                    ==== Typical case: not collapsed (yet). ====
*
                     H( K+1, K ) = BETA
                     H( K+2, K ) = ZERO
                     H( K+3, K ) = ZERO
                  ELSE
*
*                    ==== Atypical case: collapsed.  Attempt to
*                    .    reintroduce ignoring H(K+1,K).  If the
*                    .    fill resulting from the new reflector
*                    .    is too large, then abandon it.
*                    .    Otherwise, use the new one. ====
*
                     CALL DLAQR1( 3, H( K+1, K+1 ), LDH, SR( 2*M-1 ),
     $                            SI( 2*M-1 ), SR( 2*M ), SI( 2*M ),
     $                            VT )
                     SCL = ABS( VT( 1 ) ) + ABS( VT( 2 ) ) +
     $                     ABS( VT( 3 ) )
                     IF( SCL.NE.ZERO ) THEN
                        VT( 1 ) = VT( 1 ) / SCL
                        VT( 2 ) = VT( 2 ) / SCL
                        VT( 3 ) = VT( 3 ) / SCL
                     END IF
*
*                    ==== The following is the traditional and
*                    .    conservative two-small-subdiagonals
*                    .    test.  ====
*                    .
                     IF( ABS( H( K+1, K ) )*( ABS( VT( 2 ) )+
     $                   ABS( VT( 3 ) ) ).GT.ULP*ABS( VT( 1 ) )*
     $                   ( ABS( H( K, K ) )+ABS( H( K+1,
     $                   K+1 ) )+ABS( H( K+2, K+2 ) ) ) ) THEN
*
*                       ==== Starting a new bulge here would
*                       .    create non-negligible fill.   If
*                       .    the old reflector is diagonal (only
*                       .    possible with underflows), then
*                       .    change it to I.  Otherwise, use
*                       .    it with trepidation. ====
*
                        IF( V( 2, M ).EQ.ZERO .AND. V( 3, M ).EQ.ZERO )
     $                       THEN
                           V( 1, M ) = ZERO
                        ELSE
                           H( K+1, K ) = BETA
                           H( K+2, K ) = ZERO
                           H( K+3, K ) = ZERO
                        END IF
                     ELSE
*
*                       ==== Stating a new bulge here would
*                       .    create only negligible fill.
*                       .    Replace the old reflector with
*                       .    the new one. ====
*
                        ALPHA = VT( 1 )
                        CALL DLARFG( 3, ALPHA, VT( 2 ), 1, VT( 1 ) )
                        REFSUM = H( K+1, K ) + H( K+2, K )*VT( 2 ) +
     $                           H( K+3, K )*VT( 3 )
                        H( K+1, K ) = H( K+1, K ) - VT( 1 )*REFSUM
                        H( K+2, K ) = ZERO
                        H( K+3, K ) = ZERO
                        V( 1, M ) = VT( 1 )
                        V( 2, M ) = VT( 2 )
                        V( 3, M ) = VT( 3 )
                     END IF
                  END IF
               END IF
   20       CONTINUE
*
*           ==== Generate a 2-by-2 reflection, if needed. ====
*
            K = KRCOL + 3*( M22-1 )
            IF( BMP22 ) THEN
               IF( K.EQ.KTOP-1 ) THEN
                  CALL DLAQR1( 2, H( K+1, K+1 ), LDH, SR( 2*M22-1 ),
     $                         SI( 2*M22-1 ), SR( 2*M22 ), SI( 2*M22 ),
     $                         V( 1, M22 ) )
                  BETA = V( 1, M22 )
                  CALL DLARFG( 2, BETA, V( 2, M22 ), 1, V( 1, M22 ) )
               ELSE
                  BETA = H( K+1, K )
                  V( 2, M22 ) = H( K+2, K )
                  CALL DLARFG( 2, BETA, V( 2, M22 ), 1, V( 1, M22 ) )
                  H( K+1, K ) = BETA
                  H( K+2, K ) = ZERO
               END IF
            ELSE
*
*              ==== Initialize V(1,M22) here to avoid possible undefined
*              .    variable problems later. ====
*
               V( 1, M22 ) = ZERO
            END IF
*
*           ==== Multiply H by reflections from the left ====
*
            IF( ACCUM ) THEN
               JBOT = MIN( NDCOL, KBOT )
            ELSE IF( WANTT ) THEN
               JBOT = N
            ELSE
               JBOT = KBOT
            END IF
            DO 40 J = MAX( KTOP, KRCOL ), JBOT
               MEND = MIN( MBOT, ( J-KRCOL+2 ) / 3 )
               DO 30 M = MTOP, MEND
                  K = KRCOL + 3*( M-1 )
                  REFSUM = V( 1, M )*( H( K+1, J )+V( 2, M )*
     $                     H( K+2, J )+V( 3, M )*H( K+3, J ) )
                  H( K+1, J ) = H( K+1, J ) - REFSUM
                  H( K+2, J ) = H( K+2, J ) - REFSUM*V( 2, M )
                  H( K+3, J ) = H( K+3, J ) - REFSUM*V( 3, M )
   30          CONTINUE
   40       CONTINUE
            IF( BMP22 ) THEN
               K = KRCOL + 3*( M22-1 )
               DO 50 J = MAX( K+1, KTOP ), JBOT
                  REFSUM = V( 1, M22 )*( H( K+1, J )+V( 2, M22 )*
     $                     H( K+2, J ) )
                  H( K+1, J ) = H( K+1, J ) - REFSUM
                  H( K+2, J ) = H( K+2, J ) - REFSUM*V( 2, M22 )
   50          CONTINUE
            END IF
*
*           ==== Multiply H by reflections from the right.
*           .    Delay filling in the last row until the
*           .    vigilant deflation check is complete. ====
*
            IF( ACCUM ) THEN
               JTOP = MAX( KTOP, INCOL )
            ELSE IF( WANTT ) THEN
               JTOP = 1
            ELSE
               JTOP = KTOP
            END IF
            DO 90 M = MTOP, MBOT
               IF( V( 1, M ).NE.ZERO ) THEN
                  K = KRCOL + 3*( M-1 )
                  DO 60 J = JTOP, MIN( KBOT, K+3 )
                     REFSUM = V( 1, M )*( H( J, K+1 )+V( 2, M )*
     $                        H( J, K+2 )+V( 3, M )*H( J, K+3 ) )
                     H( J, K+1 ) = H( J, K+1 ) - REFSUM
                     H( J, K+2 ) = H( J, K+2 ) - REFSUM*V( 2, M )
                     H( J, K+3 ) = H( J, K+3 ) - REFSUM*V( 3, M )
   60             CONTINUE
*
                  IF( ACCUM ) THEN
*
*                    ==== Accumulate U. (If necessary, update Z later
*                    .    with with an efficient matrix-matrix
*                    .    multiply.) ====
*
                     KMS = K - INCOL
                     DO 70 J = MAX( 1, KTOP-INCOL ), KDU
                        REFSUM = V( 1, M )*( U( J, KMS+1 )+V( 2, M )*
     $                           U( J, KMS+2 )+V( 3, M )*U( J, KMS+3 ) )
                        U( J, KMS+1 ) = U( J, KMS+1 ) - REFSUM
                        U( J, KMS+2 ) = U( J, KMS+2 ) - REFSUM*V( 2, M )
                        U( J, KMS+3 ) = U( J, KMS+3 ) - REFSUM*V( 3, M )
   70                CONTINUE
                  ELSE IF( WANTZ ) THEN
*
*                    ==== U is not accumulated, so update Z
*                    .    now by multiplying by reflections
*                    .    from the right. ====
*
                     DO 80 J = ILOZ, IHIZ
                        REFSUM = V( 1, M )*( Z( J, K+1 )+V( 2, M )*
     $                           Z( J, K+2 )+V( 3, M )*Z( J, K+3 ) )
                        Z( J, K+1 ) = Z( J, K+1 ) - REFSUM
                        Z( J, K+2 ) = Z( J, K+2 ) - REFSUM*V( 2, M )
                        Z( J, K+3 ) = Z( J, K+3 ) - REFSUM*V( 3, M )
   80                CONTINUE
                  END IF
               END IF
   90       CONTINUE
*
*           ==== Special case: 2-by-2 reflection (if needed) ====
*
            K = KRCOL + 3*( M22-1 )
            IF( BMP22 .AND. ( V( 1, M22 ).NE.ZERO ) ) THEN
               DO 100 J = JTOP, MIN( KBOT, K+3 )
                  REFSUM = V( 1, M22 )*( H( J, K+1 )+V( 2, M22 )*
     $                     H( J, K+2 ) )
                  H( J, K+1 ) = H( J, K+1 ) - REFSUM
                  H( J, K+2 ) = H( J, K+2 ) - REFSUM*V( 2, M22 )
  100          CONTINUE
*
               IF( ACCUM ) THEN
                  KMS = K - INCOL
                  DO 110 J = MAX( 1, KTOP-INCOL ), KDU
                     REFSUM = V( 1, M22 )*( U( J, KMS+1 )+V( 2, M22 )*
     $                        U( J, KMS+2 ) )
                     U( J, KMS+1 ) = U( J, KMS+1 ) - REFSUM
                     U( J, KMS+2 ) = U( J, KMS+2 ) - REFSUM*V( 2, M22 )
  110             CONTINUE
               ELSE IF( WANTZ ) THEN
                  DO 120 J = ILOZ, IHIZ
                     REFSUM = V( 1, M22 )*( Z( J, K+1 )+V( 2, M22 )*
     $                        Z( J, K+2 ) )
                     Z( J, K+1 ) = Z( J, K+1 ) - REFSUM
                     Z( J, K+2 ) = Z( J, K+2 ) - REFSUM*V( 2, M22 )
  120             CONTINUE
               END IF
            END IF
*
*           ==== Vigilant deflation check ====
*
            MSTART = MTOP
            IF( KRCOL+3*( MSTART-1 ).LT.KTOP )
     $         MSTART = MSTART + 1
            MEND = MBOT
            IF( BMP22 )
     $         MEND = MEND + 1
            IF( KRCOL.EQ.KBOT-2 )
     $         MEND = MEND + 1
            DO 130 M = MSTART, MEND
               K = MIN( KBOT-1, KRCOL+3*( M-1 ) )
*
*              ==== The following convergence test requires that
*              .    the tradition small-compared-to-nearby-diagonals
*              .    criterion and the Ahues & Tisseur (LAWN 122, 1997)
*              .    criteria both be satisfied.  The latter improves
*              .    accuracy in some examples. Falling back on an
*              .    alternate convergence criterion when TST1 or TST2
*              .    is zero (as done here) is traditional but probably
*              .    unnecessary. ====
*
               IF( H( K+1, K ).NE.ZERO ) THEN
                  TST1 = ABS( H( K, K ) ) + ABS( H( K+1, K+1 ) )
                  IF( TST1.EQ.ZERO ) THEN
                     IF( K.GE.KTOP+1 )
     $                  TST1 = TST1 + ABS( H( K, K-1 ) )
                     IF( K.GE.KTOP+2 )
     $                  TST1 = TST1 + ABS( H( K, K-2 ) )
                     IF( K.GE.KTOP+3 )
     $                  TST1 = TST1 + ABS( H( K, K-3 ) )
                     IF( K.LE.KBOT-2 )
     $                  TST1 = TST1 + ABS( H( K+2, K+1 ) )
                     IF( K.LE.KBOT-3 )
     $                  TST1 = TST1 + ABS( H( K+3, K+1 ) )
                     IF( K.LE.KBOT-4 )
     $                  TST1 = TST1 + ABS( H( K+4, K+1 ) )
                  END IF
                  IF( ABS( H( K+1, K ) ).LE.MAX( SMLNUM, ULP*TST1 ) )
     $                 THEN
                     H12 = MAX( ABS( H( K+1, K ) ), ABS( H( K, K+1 ) ) )
                     H21 = MIN( ABS( H( K+1, K ) ), ABS( H( K, K+1 ) ) )
                     H11 = MAX( ABS( H( K+1, K+1 ) ),
     $                     ABS( H( K, K )-H( K+1, K+1 ) ) )
                     H22 = MIN( ABS( H( K+1, K+1 ) ),
     $                     ABS( H( K, K )-H( K+1, K+1 ) ) )
                     SCL = H11 + H12
                     TST2 = H22*( H11 / SCL )
*
                     IF( TST2.EQ.ZERO .OR. H21*( H12 / SCL ).LE.
     $                   MAX( SMLNUM, ULP*TST2 ) )H( K+1, K ) = ZERO
                  END IF
               END IF
  130       CONTINUE
*
*           ==== Fill in the last row of each bulge. ====
*
            MEND = MIN( NBMPS, ( KBOT-KRCOL-1 ) / 3 )
            DO 140 M = MTOP, MEND
               K = KRCOL + 3*( M-1 )
               REFSUM = V( 1, M )*V( 3, M )*H( K+4, K+3 )
               H( K+4, K+1 ) = -REFSUM
               H( K+4, K+2 ) = -REFSUM*V( 2, M )
               H( K+4, K+3 ) = H( K+4, K+3 ) - REFSUM*V( 3, M )
  140       CONTINUE
*
*           ==== End of near-the-diagonal bulge chase. ====
*
  150    CONTINUE
*
*        ==== Use U (if accumulated) to update far-from-diagonal
*        .    entries in H.  If required, use U to update Z as
*        .    well. ====
*
         IF( ACCUM ) THEN
            IF( WANTT ) THEN
               JTOP = 1
               JBOT = N
            ELSE
               JTOP = KTOP
               JBOT = KBOT
            END IF
            IF( ( .NOT.BLK22 ) .OR. ( INCOL.LT.KTOP ) .OR.
     $          ( NDCOL.GT.KBOT ) .OR. ( NS.LE.2 ) ) THEN
*
*              ==== Updates not exploiting the 2-by-2 block
*              .    structure of U.  K1 and NU keep track of
*              .    the location and size of U in the special
*              .    cases of introducing bulges and chasing
*              .    bulges off the bottom.  In these special
*              .    cases and in case the number of shifts
*              .    is NS = 2, there is no 2-by-2 block
*              .    structure to exploit.  ====
*
               K1 = MAX( 1, KTOP-INCOL )
               NU = ( KDU-MAX( 0, NDCOL-KBOT ) ) - K1 + 1
*
*              ==== Horizontal Multiply ====
*
               DO 160 JCOL = MIN( NDCOL, KBOT ) + 1, JBOT, NH
                  JLEN = MIN( NH, JBOT-JCOL+1 )
                  CALL DGEMM( 'C', 'N', NU, JLEN, NU, ONE, U( K1, K1 ),
     $                        LDU, H( INCOL+K1, JCOL ), LDH, ZERO, WH,
     $                        LDWH )
                  CALL DLACPY( 'ALL', NU, JLEN, WH, LDWH,
     $                         H( INCOL+K1, JCOL ), LDH )
  160          CONTINUE
*
*              ==== Vertical multiply ====
*
               DO 170 JROW = JTOP, MAX( KTOP, INCOL ) - 1, NV
                  JLEN = MIN( NV, MAX( KTOP, INCOL )-JROW )
                  CALL DGEMM( 'N', 'N', JLEN, NU, NU, ONE,
     $                        H( JROW, INCOL+K1 ), LDH, U( K1, K1 ),
     $                        LDU, ZERO, WV, LDWV )
                  CALL DLACPY( 'ALL', JLEN, NU, WV, LDWV,
     $                         H( JROW, INCOL+K1 ), LDH )
  170          CONTINUE
*
*              ==== Z multiply (also vertical) ====
*
               IF( WANTZ ) THEN
                  DO 180 JROW = ILOZ, IHIZ, NV
                     JLEN = MIN( NV, IHIZ-JROW+1 )
                     CALL DGEMM( 'N', 'N', JLEN, NU, NU, ONE,
     $                           Z( JROW, INCOL+K1 ), LDZ, U( K1, K1 ),
     $                           LDU, ZERO, WV, LDWV )
                     CALL DLACPY( 'ALL', JLEN, NU, WV, LDWV,
     $                            Z( JROW, INCOL+K1 ), LDZ )
  180             CONTINUE
               END IF
            ELSE
*
*              ==== Updates exploiting U's 2-by-2 block structure.
*              .    (I2, I4, J2, J4 are the last rows and columns
*              .    of the blocks.) ====
*
               I2 = ( KDU+1 ) / 2
               I4 = KDU
               J2 = I4 - I2
               J4 = KDU
*
*              ==== KZS and KNZ deal with the band of zeros
*              .    along the diagonal of one of the triangular
*              .    blocks. ====
*
               KZS = ( J4-J2 ) - ( NS+1 )
               KNZ = NS + 1
*
*              ==== Horizontal multiply ====
*
               DO 190 JCOL = MIN( NDCOL, KBOT ) + 1, JBOT, NH
                  JLEN = MIN( NH, JBOT-JCOL+1 )
*
*                 ==== Copy bottom of H to top+KZS of scratch ====
*                  (The first KZS rows get multiplied by zero.) ====
*
                  CALL DLACPY( 'ALL', KNZ, JLEN, H( INCOL+1+J2, JCOL ),
     $                         LDH, WH( KZS+1, 1 ), LDWH )
*
*                 ==== Multiply by U21' ====
*
                  CALL DLASET( 'ALL', KZS, JLEN, ZERO, ZERO, WH, LDWH )
                  CALL DTRMM( 'L', 'U', 'C', 'N', KNZ, JLEN, ONE,
     $                        U( J2+1, 1+KZS ), LDU, WH( KZS+1, 1 ),
     $                        LDWH )
*
*                 ==== Multiply top of H by U11' ====
*
                  CALL DGEMM( 'C', 'N', I2, JLEN, J2, ONE, U, LDU,
     $                        H( INCOL+1, JCOL ), LDH, ONE, WH, LDWH )
*
*                 ==== Copy top of H bottom of WH ====
*
                  CALL DLACPY( 'ALL', J2, JLEN, H( INCOL+1, JCOL ), LDH,
     $                         WH( I2+1, 1 ), LDWH )
*
*                 ==== Multiply by U21' ====
*
                  CALL DTRMM( 'L', 'L', 'C', 'N', J2, JLEN, ONE,
     $                        U( 1, I2+1 ), LDU, WH( I2+1, 1 ), LDWH )
*
*                 ==== Multiply by U22 ====
*
                  CALL DGEMM( 'C', 'N', I4-I2, JLEN, J4-J2, ONE,
     $                        U( J2+1, I2+1 ), LDU,
     $                        H( INCOL+1+J2, JCOL ), LDH, ONE,
     $                        WH( I2+1, 1 ), LDWH )
*
*                 ==== Copy it back ====
*
                  CALL DLACPY( 'ALL', KDU, JLEN, WH, LDWH,
     $                         H( INCOL+1, JCOL ), LDH )
  190          CONTINUE
*
*              ==== Vertical multiply ====
*
               DO 200 JROW = JTOP, MAX( INCOL, KTOP ) - 1, NV
                  JLEN = MIN( NV, MAX( INCOL, KTOP )-JROW )
*
*                 ==== Copy right of H to scratch (the first KZS
*                 .    columns get multiplied by zero) ====
*
                  CALL DLACPY( 'ALL', JLEN, KNZ, H( JROW, INCOL+1+J2 ),
     $                         LDH, WV( 1, 1+KZS ), LDWV )
*
*                 ==== Multiply by U21 ====
*
                  CALL DLASET( 'ALL', JLEN, KZS, ZERO, ZERO, WV, LDWV )
                  CALL DTRMM( 'R', 'U', 'N', 'N', JLEN, KNZ, ONE,
     $                        U( J2+1, 1+KZS ), LDU, WV( 1, 1+KZS ),
     $                        LDWV )
*
*                 ==== Multiply by U11 ====
*
                  CALL DGEMM( 'N', 'N', JLEN, I2, J2, ONE,
     $                        H( JROW, INCOL+1 ), LDH, U, LDU, ONE, WV,
     $                        LDWV )
*
*                 ==== Copy left of H to right of scratch ====
*
                  CALL DLACPY( 'ALL', JLEN, J2, H( JROW, INCOL+1 ), LDH,
     $                         WV( 1, 1+I2 ), LDWV )
*
*                 ==== Multiply by U21 ====
*
                  CALL DTRMM( 'R', 'L', 'N', 'N', JLEN, I4-I2, ONE,
     $                        U( 1, I2+1 ), LDU, WV( 1, 1+I2 ), LDWV )
*
*                 ==== Multiply by U22 ====
*
                  CALL DGEMM( 'N', 'N', JLEN, I4-I2, J4-J2, ONE,
     $                        H( JROW, INCOL+1+J2 ), LDH,
     $                        U( J2+1, I2+1 ), LDU, ONE, WV( 1, 1+I2 ),
     $                        LDWV )
*
*                 ==== Copy it back ====
*
                  CALL DLACPY( 'ALL', JLEN, KDU, WV, LDWV,
     $                         H( JROW, INCOL+1 ), LDH )
  200          CONTINUE
*
*              ==== Multiply Z (also vertical) ====
*
               IF( WANTZ ) THEN
                  DO 210 JROW = ILOZ, IHIZ, NV
                     JLEN = MIN( NV, IHIZ-JROW+1 )
*
*                    ==== Copy right of Z to left of scratch (first
*                    .     KZS columns get multiplied by zero) ====
*
                     CALL DLACPY( 'ALL', JLEN, KNZ,
     $                            Z( JROW, INCOL+1+J2 ), LDZ,
     $                            WV( 1, 1+KZS ), LDWV )
*
*                    ==== Multiply by U12 ====
*
                     CALL DLASET( 'ALL', JLEN, KZS, ZERO, ZERO, WV,
     $                            LDWV )
                     CALL DTRMM( 'R', 'U', 'N', 'N', JLEN, KNZ, ONE,
     $                           U( J2+1, 1+KZS ), LDU, WV( 1, 1+KZS ),
     $                           LDWV )
*
*                    ==== Multiply by U11 ====
*
                     CALL DGEMM( 'N', 'N', JLEN, I2, J2, ONE,
     $                           Z( JROW, INCOL+1 ), LDZ, U, LDU, ONE,
     $                           WV, LDWV )
*
*                    ==== Copy left of Z to right of scratch ====
*
                     CALL DLACPY( 'ALL', JLEN, J2, Z( JROW, INCOL+1 ),
     $                            LDZ, WV( 1, 1+I2 ), LDWV )
*
*                    ==== Multiply by U21 ====
*
                     CALL DTRMM( 'R', 'L', 'N', 'N', JLEN, I4-I2, ONE,
     $                           U( 1, I2+1 ), LDU, WV( 1, 1+I2 ),
     $                           LDWV )
*
*                    ==== Multiply by U22 ====
*
                     CALL DGEMM( 'N', 'N', JLEN, I4-I2, J4-J2, ONE,
     $                           Z( JROW, INCOL+1+J2 ), LDZ,
     $                           U( J2+1, I2+1 ), LDU, ONE,
     $                           WV( 1, 1+I2 ), LDWV )
*
*                    ==== Copy the result back to Z ====
*
                     CALL DLACPY( 'ALL', JLEN, KDU, WV, LDWV,
     $                            Z( JROW, INCOL+1 ), LDZ )
  210             CONTINUE
               END IF
            END IF
         END IF
  220 CONTINUE
*
*     ==== End of DLAQR5 ====
*
      END