summaryrefslogtreecommitdiff
path: root/2.3-1/src/fortran/lapack/dlansy.f
blob: b6c727c0e9a586ddbe41267284abb330193c4154 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
      DOUBLE PRECISION FUNCTION DLANSY( NORM, UPLO, N, A, LDA, WORK )
*
*  -- LAPACK auxiliary routine (version 3.1) --
*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd..
*     November 2006
*
*     .. Scalar Arguments ..
      CHARACTER          NORM, UPLO
      INTEGER            LDA, N
*     ..
*     .. Array Arguments ..
      DOUBLE PRECISION   A( LDA, * ), WORK( * )
*     ..
*
*  Purpose
*  =======
*
*  DLANSY  returns the value of the one norm,  or the Frobenius norm, or
*  the  infinity norm,  or the  element of  largest absolute value  of a
*  real symmetric matrix A.
*
*  Description
*  ===========
*
*  DLANSY returns the value
*
*     DLANSY = ( max(abs(A(i,j))), NORM = 'M' or 'm'
*              (
*              ( norm1(A),         NORM = '1', 'O' or 'o'
*              (
*              ( normI(A),         NORM = 'I' or 'i'
*              (
*              ( normF(A),         NORM = 'F', 'f', 'E' or 'e'
*
*  where  norm1  denotes the  one norm of a matrix (maximum column sum),
*  normI  denotes the  infinity norm  of a matrix  (maximum row sum) and
*  normF  denotes the  Frobenius norm of a matrix (square root of sum of
*  squares).  Note that  max(abs(A(i,j)))  is not a consistent matrix norm.
*
*  Arguments
*  =========
*
*  NORM    (input) CHARACTER*1
*          Specifies the value to be returned in DLANSY as described
*          above.
*
*  UPLO    (input) CHARACTER*1
*          Specifies whether the upper or lower triangular part of the
*          symmetric matrix A is to be referenced.
*          = 'U':  Upper triangular part of A is referenced
*          = 'L':  Lower triangular part of A is referenced
*
*  N       (input) INTEGER
*          The order of the matrix A.  N >= 0.  When N = 0, DLANSY is
*          set to zero.
*
*  A       (input) DOUBLE PRECISION array, dimension (LDA,N)
*          The symmetric matrix A.  If UPLO = 'U', the leading n by n
*          upper triangular part of A contains the upper triangular part
*          of the matrix A, and the strictly lower triangular part of A
*          is not referenced.  If UPLO = 'L', the leading n by n lower
*          triangular part of A contains the lower triangular part of
*          the matrix A, and the strictly upper triangular part of A is
*          not referenced.
*
*  LDA     (input) INTEGER
*          The leading dimension of the array A.  LDA >= max(N,1).
*
*  WORK    (workspace) DOUBLE PRECISION array, dimension (MAX(1,LWORK)),
*          where LWORK >= N when NORM = 'I' or '1' or 'O'; otherwise,
*          WORK is not referenced.
*
* =====================================================================
*
*     .. Parameters ..
      DOUBLE PRECISION   ONE, ZERO
      PARAMETER          ( ONE = 1.0D+0, ZERO = 0.0D+0 )
*     ..
*     .. Local Scalars ..
      INTEGER            I, J
      DOUBLE PRECISION   ABSA, SCALE, SUM, VALUE
*     ..
*     .. External Subroutines ..
      EXTERNAL           DLASSQ
*     ..
*     .. External Functions ..
      LOGICAL            LSAME
      EXTERNAL           LSAME
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          ABS, MAX, SQRT
*     ..
*     .. Executable Statements ..
*
      IF( N.EQ.0 ) THEN
         VALUE = ZERO
      ELSE IF( LSAME( NORM, 'M' ) ) THEN
*
*        Find max(abs(A(i,j))).
*
         VALUE = ZERO
         IF( LSAME( UPLO, 'U' ) ) THEN
            DO 20 J = 1, N
               DO 10 I = 1, J
                  VALUE = MAX( VALUE, ABS( A( I, J ) ) )
   10          CONTINUE
   20       CONTINUE
         ELSE
            DO 40 J = 1, N
               DO 30 I = J, N
                  VALUE = MAX( VALUE, ABS( A( I, J ) ) )
   30          CONTINUE
   40       CONTINUE
         END IF
      ELSE IF( ( LSAME( NORM, 'I' ) ) .OR. ( LSAME( NORM, 'O' ) ) .OR.
     $         ( NORM.EQ.'1' ) ) THEN
*
*        Find normI(A) ( = norm1(A), since A is symmetric).
*
         VALUE = ZERO
         IF( LSAME( UPLO, 'U' ) ) THEN
            DO 60 J = 1, N
               SUM = ZERO
               DO 50 I = 1, J - 1
                  ABSA = ABS( A( I, J ) )
                  SUM = SUM + ABSA
                  WORK( I ) = WORK( I ) + ABSA
   50          CONTINUE
               WORK( J ) = SUM + ABS( A( J, J ) )
   60       CONTINUE
            DO 70 I = 1, N
               VALUE = MAX( VALUE, WORK( I ) )
   70       CONTINUE
         ELSE
            DO 80 I = 1, N
               WORK( I ) = ZERO
   80       CONTINUE
            DO 100 J = 1, N
               SUM = WORK( J ) + ABS( A( J, J ) )
               DO 90 I = J + 1, N
                  ABSA = ABS( A( I, J ) )
                  SUM = SUM + ABSA
                  WORK( I ) = WORK( I ) + ABSA
   90          CONTINUE
               VALUE = MAX( VALUE, SUM )
  100       CONTINUE
         END IF
      ELSE IF( ( LSAME( NORM, 'F' ) ) .OR. ( LSAME( NORM, 'E' ) ) ) THEN
*
*        Find normF(A).
*
         SCALE = ZERO
         SUM = ONE
         IF( LSAME( UPLO, 'U' ) ) THEN
            DO 110 J = 2, N
               CALL DLASSQ( J-1, A( 1, J ), 1, SCALE, SUM )
  110       CONTINUE
         ELSE
            DO 120 J = 1, N - 1
               CALL DLASSQ( N-J, A( J+1, J ), 1, SCALE, SUM )
  120       CONTINUE
         END IF
         SUM = 2*SUM
         CALL DLASSQ( N, A, LDA+1, SCALE, SUM )
         VALUE = SCALE*SQRT( SUM )
      END IF
*
      DLANSY = VALUE
      RETURN
*
*     End of DLANSY
*
      END