1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
|
DOUBLE PRECISION FUNCTION DLANST( NORM, N, D, E )
*
* -- LAPACK auxiliary routine (version 3.1) --
* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd..
* November 2006
*
* .. Scalar Arguments ..
CHARACTER NORM
INTEGER N
* ..
* .. Array Arguments ..
DOUBLE PRECISION D( * ), E( * )
* ..
*
* Purpose
* =======
*
* DLANST returns the value of the one norm, or the Frobenius norm, or
* the infinity norm, or the element of largest absolute value of a
* real symmetric tridiagonal matrix A.
*
* Description
* ===========
*
* DLANST returns the value
*
* DLANST = ( max(abs(A(i,j))), NORM = 'M' or 'm'
* (
* ( norm1(A), NORM = '1', 'O' or 'o'
* (
* ( normI(A), NORM = 'I' or 'i'
* (
* ( normF(A), NORM = 'F', 'f', 'E' or 'e'
*
* where norm1 denotes the one norm of a matrix (maximum column sum),
* normI denotes the infinity norm of a matrix (maximum row sum) and
* normF denotes the Frobenius norm of a matrix (square root of sum of
* squares). Note that max(abs(A(i,j))) is not a consistent matrix norm.
*
* Arguments
* =========
*
* NORM (input) CHARACTER*1
* Specifies the value to be returned in DLANST as described
* above.
*
* N (input) INTEGER
* The order of the matrix A. N >= 0. When N = 0, DLANST is
* set to zero.
*
* D (input) DOUBLE PRECISION array, dimension (N)
* The diagonal elements of A.
*
* E (input) DOUBLE PRECISION array, dimension (N-1)
* The (n-1) sub-diagonal or super-diagonal elements of A.
*
* =====================================================================
*
* .. Parameters ..
DOUBLE PRECISION ONE, ZERO
PARAMETER ( ONE = 1.0D+0, ZERO = 0.0D+0 )
* ..
* .. Local Scalars ..
INTEGER I
DOUBLE PRECISION ANORM, SCALE, SUM
* ..
* .. External Functions ..
LOGICAL LSAME
EXTERNAL LSAME
* ..
* .. External Subroutines ..
EXTERNAL DLASSQ
* ..
* .. Intrinsic Functions ..
INTRINSIC ABS, MAX, SQRT
* ..
* .. Executable Statements ..
*
IF( N.LE.0 ) THEN
ANORM = ZERO
ELSE IF( LSAME( NORM, 'M' ) ) THEN
*
* Find max(abs(A(i,j))).
*
ANORM = ABS( D( N ) )
DO 10 I = 1, N - 1
ANORM = MAX( ANORM, ABS( D( I ) ) )
ANORM = MAX( ANORM, ABS( E( I ) ) )
10 CONTINUE
ELSE IF( LSAME( NORM, 'O' ) .OR. NORM.EQ.'1' .OR.
$ LSAME( NORM, 'I' ) ) THEN
*
* Find norm1(A).
*
IF( N.EQ.1 ) THEN
ANORM = ABS( D( 1 ) )
ELSE
ANORM = MAX( ABS( D( 1 ) )+ABS( E( 1 ) ),
$ ABS( E( N-1 ) )+ABS( D( N ) ) )
DO 20 I = 2, N - 1
ANORM = MAX( ANORM, ABS( D( I ) )+ABS( E( I ) )+
$ ABS( E( I-1 ) ) )
20 CONTINUE
END IF
ELSE IF( ( LSAME( NORM, 'F' ) ) .OR. ( LSAME( NORM, 'E' ) ) ) THEN
*
* Find normF(A).
*
SCALE = ZERO
SUM = ONE
IF( N.GT.1 ) THEN
CALL DLASSQ( N-1, E, 1, SCALE, SUM )
SUM = 2*SUM
END IF
CALL DLASSQ( N, D, 1, SCALE, SUM )
ANORM = SCALE*SQRT( SUM )
END IF
*
DLANST = ANORM
RETURN
*
* End of DLANST
*
END
|