summaryrefslogtreecommitdiff
path: root/2.3-1/src/fortran/lapack/dlanst.f
blob: 2b12091a8c5be56a490c82930a6ffaeb958b809f (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
      DOUBLE PRECISION FUNCTION DLANST( NORM, N, D, E )
*
*  -- LAPACK auxiliary routine (version 3.1) --
*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd..
*     November 2006
*
*     .. Scalar Arguments ..
      CHARACTER          NORM
      INTEGER            N
*     ..
*     .. Array Arguments ..
      DOUBLE PRECISION   D( * ), E( * )
*     ..
*
*  Purpose
*  =======
*
*  DLANST  returns the value of the one norm,  or the Frobenius norm, or
*  the  infinity norm,  or the  element of  largest absolute value  of a
*  real symmetric tridiagonal matrix A.
*
*  Description
*  ===========
*
*  DLANST returns the value
*
*     DLANST = ( max(abs(A(i,j))), NORM = 'M' or 'm'
*              (
*              ( norm1(A),         NORM = '1', 'O' or 'o'
*              (
*              ( normI(A),         NORM = 'I' or 'i'
*              (
*              ( normF(A),         NORM = 'F', 'f', 'E' or 'e'
*
*  where  norm1  denotes the  one norm of a matrix (maximum column sum),
*  normI  denotes the  infinity norm  of a matrix  (maximum row sum) and
*  normF  denotes the  Frobenius norm of a matrix (square root of sum of
*  squares).  Note that  max(abs(A(i,j)))  is not a consistent matrix norm.
*
*  Arguments
*  =========
*
*  NORM    (input) CHARACTER*1
*          Specifies the value to be returned in DLANST as described
*          above.
*
*  N       (input) INTEGER
*          The order of the matrix A.  N >= 0.  When N = 0, DLANST is
*          set to zero.
*
*  D       (input) DOUBLE PRECISION array, dimension (N)
*          The diagonal elements of A.
*
*  E       (input) DOUBLE PRECISION array, dimension (N-1)
*          The (n-1) sub-diagonal or super-diagonal elements of A.
*
*  =====================================================================
*
*     .. Parameters ..
      DOUBLE PRECISION   ONE, ZERO
      PARAMETER          ( ONE = 1.0D+0, ZERO = 0.0D+0 )
*     ..
*     .. Local Scalars ..
      INTEGER            I
      DOUBLE PRECISION   ANORM, SCALE, SUM
*     ..
*     .. External Functions ..
      LOGICAL            LSAME
      EXTERNAL           LSAME
*     ..
*     .. External Subroutines ..
      EXTERNAL           DLASSQ
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          ABS, MAX, SQRT
*     ..
*     .. Executable Statements ..
*
      IF( N.LE.0 ) THEN
         ANORM = ZERO
      ELSE IF( LSAME( NORM, 'M' ) ) THEN
*
*        Find max(abs(A(i,j))).
*
         ANORM = ABS( D( N ) )
         DO 10 I = 1, N - 1
            ANORM = MAX( ANORM, ABS( D( I ) ) )
            ANORM = MAX( ANORM, ABS( E( I ) ) )
   10    CONTINUE
      ELSE IF( LSAME( NORM, 'O' ) .OR. NORM.EQ.'1' .OR.
     $         LSAME( NORM, 'I' ) ) THEN
*
*        Find norm1(A).
*
         IF( N.EQ.1 ) THEN
            ANORM = ABS( D( 1 ) )
         ELSE
            ANORM = MAX( ABS( D( 1 ) )+ABS( E( 1 ) ),
     $              ABS( E( N-1 ) )+ABS( D( N ) ) )
            DO 20 I = 2, N - 1
               ANORM = MAX( ANORM, ABS( D( I ) )+ABS( E( I ) )+
     $                 ABS( E( I-1 ) ) )
   20       CONTINUE
         END IF
      ELSE IF( ( LSAME( NORM, 'F' ) ) .OR. ( LSAME( NORM, 'E' ) ) ) THEN
*
*        Find normF(A).
*
         SCALE = ZERO
         SUM = ONE
         IF( N.GT.1 ) THEN
            CALL DLASSQ( N-1, E, 1, SCALE, SUM )
            SUM = 2*SUM
         END IF
         CALL DLASSQ( N, D, 1, SCALE, SUM )
         ANORM = SCALE*SQRT( SUM )
      END IF
*
      DLANST = ANORM
      RETURN
*
*     End of DLANST
*
      END