summaryrefslogtreecommitdiff
path: root/2.3-1/src/fortran/lapack/dlaexc.f
blob: 18e7d24713b5f17a173dd907f92b73d11243f028 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
      SUBROUTINE DLAEXC( WANTQ, N, T, LDT, Q, LDQ, J1, N1, N2, WORK,
     $                   INFO )
*
*  -- LAPACK auxiliary routine (version 3.1) --
*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd..
*     November 2006
*
*     .. Scalar Arguments ..
      LOGICAL            WANTQ
      INTEGER            INFO, J1, LDQ, LDT, N, N1, N2
*     ..
*     .. Array Arguments ..
      DOUBLE PRECISION   Q( LDQ, * ), T( LDT, * ), WORK( * )
*     ..
*
*  Purpose
*  =======
*
*  DLAEXC swaps adjacent diagonal blocks T11 and T22 of order 1 or 2 in
*  an upper quasi-triangular matrix T by an orthogonal similarity
*  transformation.
*
*  T must be in Schur canonical form, that is, block upper triangular
*  with 1-by-1 and 2-by-2 diagonal blocks; each 2-by-2 diagonal block
*  has its diagonal elemnts equal and its off-diagonal elements of
*  opposite sign.
*
*  Arguments
*  =========
*
*  WANTQ   (input) LOGICAL
*          = .TRUE. : accumulate the transformation in the matrix Q;
*          = .FALSE.: do not accumulate the transformation.
*
*  N       (input) INTEGER
*          The order of the matrix T. N >= 0.
*
*  T       (input/output) DOUBLE PRECISION array, dimension (LDT,N)
*          On entry, the upper quasi-triangular matrix T, in Schur
*          canonical form.
*          On exit, the updated matrix T, again in Schur canonical form.
*
*  LDT     (input)  INTEGER
*          The leading dimension of the array T. LDT >= max(1,N).
*
*  Q       (input/output) DOUBLE PRECISION array, dimension (LDQ,N)
*          On entry, if WANTQ is .TRUE., the orthogonal matrix Q.
*          On exit, if WANTQ is .TRUE., the updated matrix Q.
*          If WANTQ is .FALSE., Q is not referenced.
*
*  LDQ     (input) INTEGER
*          The leading dimension of the array Q.
*          LDQ >= 1; and if WANTQ is .TRUE., LDQ >= N.
*
*  J1      (input) INTEGER
*          The index of the first row of the first block T11.
*
*  N1      (input) INTEGER
*          The order of the first block T11. N1 = 0, 1 or 2.
*
*  N2      (input) INTEGER
*          The order of the second block T22. N2 = 0, 1 or 2.
*
*  WORK    (workspace) DOUBLE PRECISION array, dimension (N)
*
*  INFO    (output) INTEGER
*          = 0: successful exit
*          = 1: the transformed matrix T would be too far from Schur
*               form; the blocks are not swapped and T and Q are
*               unchanged.
*
*  =====================================================================
*
*     .. Parameters ..
      DOUBLE PRECISION   ZERO, ONE
      PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0 )
      DOUBLE PRECISION   TEN
      PARAMETER          ( TEN = 1.0D+1 )
      INTEGER            LDD, LDX
      PARAMETER          ( LDD = 4, LDX = 2 )
*     ..
*     .. Local Scalars ..
      INTEGER            IERR, J2, J3, J4, K, ND
      DOUBLE PRECISION   CS, DNORM, EPS, SCALE, SMLNUM, SN, T11, T22,
     $                   T33, TAU, TAU1, TAU2, TEMP, THRESH, WI1, WI2,
     $                   WR1, WR2, XNORM
*     ..
*     .. Local Arrays ..
      DOUBLE PRECISION   D( LDD, 4 ), U( 3 ), U1( 3 ), U2( 3 ),
     $                   X( LDX, 2 )
*     ..
*     .. External Functions ..
      DOUBLE PRECISION   DLAMCH, DLANGE
      EXTERNAL           DLAMCH, DLANGE
*     ..
*     .. External Subroutines ..
      EXTERNAL           DLACPY, DLANV2, DLARFG, DLARFX, DLARTG, DLASY2,
     $                   DROT
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          ABS, MAX
*     ..
*     .. Executable Statements ..
*
      INFO = 0
*
*     Quick return if possible
*
      IF( N.EQ.0 .OR. N1.EQ.0 .OR. N2.EQ.0 )
     $   RETURN
      IF( J1+N1.GT.N )
     $   RETURN
*
      J2 = J1 + 1
      J3 = J1 + 2
      J4 = J1 + 3
*
      IF( N1.EQ.1 .AND. N2.EQ.1 ) THEN
*
*        Swap two 1-by-1 blocks.
*
         T11 = T( J1, J1 )
         T22 = T( J2, J2 )
*
*        Determine the transformation to perform the interchange.
*
         CALL DLARTG( T( J1, J2 ), T22-T11, CS, SN, TEMP )
*
*        Apply transformation to the matrix T.
*
         IF( J3.LE.N )
     $      CALL DROT( N-J1-1, T( J1, J3 ), LDT, T( J2, J3 ), LDT, CS,
     $                 SN )
         CALL DROT( J1-1, T( 1, J1 ), 1, T( 1, J2 ), 1, CS, SN )
*
         T( J1, J1 ) = T22
         T( J2, J2 ) = T11
*
         IF( WANTQ ) THEN
*
*           Accumulate transformation in the matrix Q.
*
            CALL DROT( N, Q( 1, J1 ), 1, Q( 1, J2 ), 1, CS, SN )
         END IF
*
      ELSE
*
*        Swapping involves at least one 2-by-2 block.
*
*        Copy the diagonal block of order N1+N2 to the local array D
*        and compute its norm.
*
         ND = N1 + N2
         CALL DLACPY( 'Full', ND, ND, T( J1, J1 ), LDT, D, LDD )
         DNORM = DLANGE( 'Max', ND, ND, D, LDD, WORK )
*
*        Compute machine-dependent threshold for test for accepting
*        swap.
*
         EPS = DLAMCH( 'P' )
         SMLNUM = DLAMCH( 'S' ) / EPS
         THRESH = MAX( TEN*EPS*DNORM, SMLNUM )
*
*        Solve T11*X - X*T22 = scale*T12 for X.
*
         CALL DLASY2( .FALSE., .FALSE., -1, N1, N2, D, LDD,
     $                D( N1+1, N1+1 ), LDD, D( 1, N1+1 ), LDD, SCALE, X,
     $                LDX, XNORM, IERR )
*
*        Swap the adjacent diagonal blocks.
*
         K = N1 + N1 + N2 - 3
         GO TO ( 10, 20, 30 )K
*
   10    CONTINUE
*
*        N1 = 1, N2 = 2: generate elementary reflector H so that:
*
*        ( scale, X11, X12 ) H = ( 0, 0, * )
*
         U( 1 ) = SCALE
         U( 2 ) = X( 1, 1 )
         U( 3 ) = X( 1, 2 )
         CALL DLARFG( 3, U( 3 ), U, 1, TAU )
         U( 3 ) = ONE
         T11 = T( J1, J1 )
*
*        Perform swap provisionally on diagonal block in D.
*
         CALL DLARFX( 'L', 3, 3, U, TAU, D, LDD, WORK )
         CALL DLARFX( 'R', 3, 3, U, TAU, D, LDD, WORK )
*
*        Test whether to reject swap.
*
         IF( MAX( ABS( D( 3, 1 ) ), ABS( D( 3, 2 ) ), ABS( D( 3,
     $       3 )-T11 ) ).GT.THRESH )GO TO 50
*
*        Accept swap: apply transformation to the entire matrix T.
*
         CALL DLARFX( 'L', 3, N-J1+1, U, TAU, T( J1, J1 ), LDT, WORK )
         CALL DLARFX( 'R', J2, 3, U, TAU, T( 1, J1 ), LDT, WORK )
*
         T( J3, J1 ) = ZERO
         T( J3, J2 ) = ZERO
         T( J3, J3 ) = T11
*
         IF( WANTQ ) THEN
*
*           Accumulate transformation in the matrix Q.
*
            CALL DLARFX( 'R', N, 3, U, TAU, Q( 1, J1 ), LDQ, WORK )
         END IF
         GO TO 40
*
   20    CONTINUE
*
*        N1 = 2, N2 = 1: generate elementary reflector H so that:
*
*        H (  -X11 ) = ( * )
*          (  -X21 ) = ( 0 )
*          ( scale ) = ( 0 )
*
         U( 1 ) = -X( 1, 1 )
         U( 2 ) = -X( 2, 1 )
         U( 3 ) = SCALE
         CALL DLARFG( 3, U( 1 ), U( 2 ), 1, TAU )
         U( 1 ) = ONE
         T33 = T( J3, J3 )
*
*        Perform swap provisionally on diagonal block in D.
*
         CALL DLARFX( 'L', 3, 3, U, TAU, D, LDD, WORK )
         CALL DLARFX( 'R', 3, 3, U, TAU, D, LDD, WORK )
*
*        Test whether to reject swap.
*
         IF( MAX( ABS( D( 2, 1 ) ), ABS( D( 3, 1 ) ), ABS( D( 1,
     $       1 )-T33 ) ).GT.THRESH )GO TO 50
*
*        Accept swap: apply transformation to the entire matrix T.
*
         CALL DLARFX( 'R', J3, 3, U, TAU, T( 1, J1 ), LDT, WORK )
         CALL DLARFX( 'L', 3, N-J1, U, TAU, T( J1, J2 ), LDT, WORK )
*
         T( J1, J1 ) = T33
         T( J2, J1 ) = ZERO
         T( J3, J1 ) = ZERO
*
         IF( WANTQ ) THEN
*
*           Accumulate transformation in the matrix Q.
*
            CALL DLARFX( 'R', N, 3, U, TAU, Q( 1, J1 ), LDQ, WORK )
         END IF
         GO TO 40
*
   30    CONTINUE
*
*        N1 = 2, N2 = 2: generate elementary reflectors H(1) and H(2) so
*        that:
*
*        H(2) H(1) (  -X11  -X12 ) = (  *  * )
*                  (  -X21  -X22 )   (  0  * )
*                  ( scale    0  )   (  0  0 )
*                  (    0  scale )   (  0  0 )
*
         U1( 1 ) = -X( 1, 1 )
         U1( 2 ) = -X( 2, 1 )
         U1( 3 ) = SCALE
         CALL DLARFG( 3, U1( 1 ), U1( 2 ), 1, TAU1 )
         U1( 1 ) = ONE
*
         TEMP = -TAU1*( X( 1, 2 )+U1( 2 )*X( 2, 2 ) )
         U2( 1 ) = -TEMP*U1( 2 ) - X( 2, 2 )
         U2( 2 ) = -TEMP*U1( 3 )
         U2( 3 ) = SCALE
         CALL DLARFG( 3, U2( 1 ), U2( 2 ), 1, TAU2 )
         U2( 1 ) = ONE
*
*        Perform swap provisionally on diagonal block in D.
*
         CALL DLARFX( 'L', 3, 4, U1, TAU1, D, LDD, WORK )
         CALL DLARFX( 'R', 4, 3, U1, TAU1, D, LDD, WORK )
         CALL DLARFX( 'L', 3, 4, U2, TAU2, D( 2, 1 ), LDD, WORK )
         CALL DLARFX( 'R', 4, 3, U2, TAU2, D( 1, 2 ), LDD, WORK )
*
*        Test whether to reject swap.
*
         IF( MAX( ABS( D( 3, 1 ) ), ABS( D( 3, 2 ) ), ABS( D( 4, 1 ) ),
     $       ABS( D( 4, 2 ) ) ).GT.THRESH )GO TO 50
*
*        Accept swap: apply transformation to the entire matrix T.
*
         CALL DLARFX( 'L', 3, N-J1+1, U1, TAU1, T( J1, J1 ), LDT, WORK )
         CALL DLARFX( 'R', J4, 3, U1, TAU1, T( 1, J1 ), LDT, WORK )
         CALL DLARFX( 'L', 3, N-J1+1, U2, TAU2, T( J2, J1 ), LDT, WORK )
         CALL DLARFX( 'R', J4, 3, U2, TAU2, T( 1, J2 ), LDT, WORK )
*
         T( J3, J1 ) = ZERO
         T( J3, J2 ) = ZERO
         T( J4, J1 ) = ZERO
         T( J4, J2 ) = ZERO
*
         IF( WANTQ ) THEN
*
*           Accumulate transformation in the matrix Q.
*
            CALL DLARFX( 'R', N, 3, U1, TAU1, Q( 1, J1 ), LDQ, WORK )
            CALL DLARFX( 'R', N, 3, U2, TAU2, Q( 1, J2 ), LDQ, WORK )
         END IF
*
   40    CONTINUE
*
         IF( N2.EQ.2 ) THEN
*
*           Standardize new 2-by-2 block T11
*
            CALL DLANV2( T( J1, J1 ), T( J1, J2 ), T( J2, J1 ),
     $                   T( J2, J2 ), WR1, WI1, WR2, WI2, CS, SN )
            CALL DROT( N-J1-1, T( J1, J1+2 ), LDT, T( J2, J1+2 ), LDT,
     $                 CS, SN )
            CALL DROT( J1-1, T( 1, J1 ), 1, T( 1, J2 ), 1, CS, SN )
            IF( WANTQ )
     $         CALL DROT( N, Q( 1, J1 ), 1, Q( 1, J2 ), 1, CS, SN )
         END IF
*
         IF( N1.EQ.2 ) THEN
*
*           Standardize new 2-by-2 block T22
*
            J3 = J1 + N2
            J4 = J3 + 1
            CALL DLANV2( T( J3, J3 ), T( J3, J4 ), T( J4, J3 ),
     $                   T( J4, J4 ), WR1, WI1, WR2, WI2, CS, SN )
            IF( J3+2.LE.N )
     $         CALL DROT( N-J3-1, T( J3, J3+2 ), LDT, T( J4, J3+2 ),
     $                    LDT, CS, SN )
            CALL DROT( J3-1, T( 1, J3 ), 1, T( 1, J4 ), 1, CS, SN )
            IF( WANTQ )
     $         CALL DROT( N, Q( 1, J3 ), 1, Q( 1, J4 ), 1, CS, SN )
         END IF
*
      END IF
      RETURN
*
*     Exit with INFO = 1 if swap was rejected.
*
   50 CONTINUE
      INFO = 1
      RETURN
*
*     End of DLAEXC
*
      END