summaryrefslogtreecommitdiff
path: root/2.3-1/src/fortran/lapack/dggbal.f
blob: 2034880abb16960287b3ebd8a693ae1fb53cc321 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
      SUBROUTINE DGGBAL( JOB, N, A, LDA, B, LDB, ILO, IHI, LSCALE,
     $                   RSCALE, WORK, INFO )
*
*  -- LAPACK routine (version 3.1) --
*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd..
*     November 2006
*
*     .. Scalar Arguments ..
      CHARACTER          JOB
      INTEGER            IHI, ILO, INFO, LDA, LDB, N
*     ..
*     .. Array Arguments ..
      DOUBLE PRECISION   A( LDA, * ), B( LDB, * ), LSCALE( * ),
     $                   RSCALE( * ), WORK( * )
*     ..
*
*  Purpose
*  =======
*
*  DGGBAL balances a pair of general real matrices (A,B).  This
*  involves, first, permuting A and B by similarity transformations to
*  isolate eigenvalues in the first 1 to ILO$-$1 and last IHI+1 to N
*  elements on the diagonal; and second, applying a diagonal similarity
*  transformation to rows and columns ILO to IHI to make the rows
*  and columns as close in norm as possible. Both steps are optional.
*
*  Balancing may reduce the 1-norm of the matrices, and improve the
*  accuracy of the computed eigenvalues and/or eigenvectors in the
*  generalized eigenvalue problem A*x = lambda*B*x.
*
*  Arguments
*  =========
*
*  JOB     (input) CHARACTER*1
*          Specifies the operations to be performed on A and B:
*          = 'N':  none:  simply set ILO = 1, IHI = N, LSCALE(I) = 1.0
*                  and RSCALE(I) = 1.0 for i = 1,...,N.
*          = 'P':  permute only;
*          = 'S':  scale only;
*          = 'B':  both permute and scale.
*
*  N       (input) INTEGER
*          The order of the matrices A and B.  N >= 0.
*
*  A       (input/output) DOUBLE PRECISION array, dimension (LDA,N)
*          On entry, the input matrix A.
*          On exit,  A is overwritten by the balanced matrix.
*          If JOB = 'N', A is not referenced.
*
*  LDA     (input) INTEGER
*          The leading dimension of the array A. LDA >= max(1,N).
*
*  B       (input/output) DOUBLE PRECISION array, dimension (LDB,N)
*          On entry, the input matrix B.
*          On exit,  B is overwritten by the balanced matrix.
*          If JOB = 'N', B is not referenced.
*
*  LDB     (input) INTEGER
*          The leading dimension of the array B. LDB >= max(1,N).
*
*  ILO     (output) INTEGER
*  IHI     (output) INTEGER
*          ILO and IHI are set to integers such that on exit
*          A(i,j) = 0 and B(i,j) = 0 if i > j and
*          j = 1,...,ILO-1 or i = IHI+1,...,N.
*          If JOB = 'N' or 'S', ILO = 1 and IHI = N.
*
*  LSCALE  (output) DOUBLE PRECISION array, dimension (N)
*          Details of the permutations and scaling factors applied
*          to the left side of A and B.  If P(j) is the index of the
*          row interchanged with row j, and D(j)
*          is the scaling factor applied to row j, then
*            LSCALE(j) = P(j)    for J = 1,...,ILO-1
*                      = D(j)    for J = ILO,...,IHI
*                      = P(j)    for J = IHI+1,...,N.
*          The order in which the interchanges are made is N to IHI+1,
*          then 1 to ILO-1.
*
*  RSCALE  (output) DOUBLE PRECISION array, dimension (N)
*          Details of the permutations and scaling factors applied
*          to the right side of A and B.  If P(j) is the index of the
*          column interchanged with column j, and D(j)
*          is the scaling factor applied to column j, then
*            LSCALE(j) = P(j)    for J = 1,...,ILO-1
*                      = D(j)    for J = ILO,...,IHI
*                      = P(j)    for J = IHI+1,...,N.
*          The order in which the interchanges are made is N to IHI+1,
*          then 1 to ILO-1.
*
*  WORK    (workspace) REAL array, dimension (lwork)
*          lwork must be at least max(1,6*N) when JOB = 'S' or 'B', and
*          at least 1 when JOB = 'N' or 'P'.
*
*  INFO    (output) INTEGER
*          = 0:  successful exit
*          < 0:  if INFO = -i, the i-th argument had an illegal value.
*
*  Further Details
*  ===============
*
*  See R.C. WARD, Balancing the generalized eigenvalue problem,
*                 SIAM J. Sci. Stat. Comp. 2 (1981), 141-152.
*
*  =====================================================================
*
*     .. Parameters ..
      DOUBLE PRECISION   ZERO, HALF, ONE
      PARAMETER          ( ZERO = 0.0D+0, HALF = 0.5D+0, ONE = 1.0D+0 )
      DOUBLE PRECISION   THREE, SCLFAC
      PARAMETER          ( THREE = 3.0D+0, SCLFAC = 1.0D+1 )
*     ..
*     .. Local Scalars ..
      INTEGER            I, ICAB, IFLOW, IP1, IR, IRAB, IT, J, JC, JP1,
     $                   K, KOUNT, L, LCAB, LM1, LRAB, LSFMAX, LSFMIN,
     $                   M, NR, NRP2
      DOUBLE PRECISION   ALPHA, BASL, BETA, CAB, CMAX, COEF, COEF2,
     $                   COEF5, COR, EW, EWC, GAMMA, PGAMMA, RAB, SFMAX,
     $                   SFMIN, SUM, T, TA, TB, TC
*     ..
*     .. External Functions ..
      LOGICAL            LSAME
      INTEGER            IDAMAX
      DOUBLE PRECISION   DDOT, DLAMCH
      EXTERNAL           LSAME, IDAMAX, DDOT, DLAMCH
*     ..
*     .. External Subroutines ..
      EXTERNAL           DAXPY, DSCAL, DSWAP, XERBLA
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          ABS, DBLE, INT, LOG10, MAX, MIN, SIGN
*     ..
*     .. Executable Statements ..
*
*     Test the input parameters
*
      INFO = 0
      IF( .NOT.LSAME( JOB, 'N' ) .AND. .NOT.LSAME( JOB, 'P' ) .AND.
     $    .NOT.LSAME( JOB, 'S' ) .AND. .NOT.LSAME( JOB, 'B' ) ) THEN
         INFO = -1
      ELSE IF( N.LT.0 ) THEN
         INFO = -2
      ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
         INFO = -4
      ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
         INFO = -6
      END IF
      IF( INFO.NE.0 ) THEN
         CALL XERBLA( 'DGGBAL', -INFO )
         RETURN
      END IF
*
*     Quick return if possible
*
      IF( N.EQ.0 ) THEN
         ILO = 1
         IHI = N
         RETURN
      END IF
*
      IF( N.EQ.1 ) THEN
         ILO = 1
         IHI = N
         LSCALE( 1 ) = ONE
         RSCALE( 1 ) = ONE
         RETURN
      END IF
*
      IF( LSAME( JOB, 'N' ) ) THEN
         ILO = 1
         IHI = N
         DO 10 I = 1, N
            LSCALE( I ) = ONE
            RSCALE( I ) = ONE
   10    CONTINUE
         RETURN
      END IF
*
      K = 1
      L = N
      IF( LSAME( JOB, 'S' ) )
     $   GO TO 190
*
      GO TO 30
*
*     Permute the matrices A and B to isolate the eigenvalues.
*
*     Find row with one nonzero in columns 1 through L
*
   20 CONTINUE
      L = LM1
      IF( L.NE.1 )
     $   GO TO 30
*
      RSCALE( 1 ) = ONE
      LSCALE( 1 ) = ONE
      GO TO 190
*
   30 CONTINUE
      LM1 = L - 1
      DO 80 I = L, 1, -1
         DO 40 J = 1, LM1
            JP1 = J + 1
            IF( A( I, J ).NE.ZERO .OR. B( I, J ).NE.ZERO )
     $         GO TO 50
   40    CONTINUE
         J = L
         GO TO 70
*
   50    CONTINUE
         DO 60 J = JP1, L
            IF( A( I, J ).NE.ZERO .OR. B( I, J ).NE.ZERO )
     $         GO TO 80
   60    CONTINUE
         J = JP1 - 1
*
   70    CONTINUE
         M = L
         IFLOW = 1
         GO TO 160
   80 CONTINUE
      GO TO 100
*
*     Find column with one nonzero in rows K through N
*
   90 CONTINUE
      K = K + 1
*
  100 CONTINUE
      DO 150 J = K, L
         DO 110 I = K, LM1
            IP1 = I + 1
            IF( A( I, J ).NE.ZERO .OR. B( I, J ).NE.ZERO )
     $         GO TO 120
  110    CONTINUE
         I = L
         GO TO 140
  120    CONTINUE
         DO 130 I = IP1, L
            IF( A( I, J ).NE.ZERO .OR. B( I, J ).NE.ZERO )
     $         GO TO 150
  130    CONTINUE
         I = IP1 - 1
  140    CONTINUE
         M = K
         IFLOW = 2
         GO TO 160
  150 CONTINUE
      GO TO 190
*
*     Permute rows M and I
*
  160 CONTINUE
      LSCALE( M ) = I
      IF( I.EQ.M )
     $   GO TO 170
      CALL DSWAP( N-K+1, A( I, K ), LDA, A( M, K ), LDA )
      CALL DSWAP( N-K+1, B( I, K ), LDB, B( M, K ), LDB )
*
*     Permute columns M and J
*
  170 CONTINUE
      RSCALE( M ) = J
      IF( J.EQ.M )
     $   GO TO 180
      CALL DSWAP( L, A( 1, J ), 1, A( 1, M ), 1 )
      CALL DSWAP( L, B( 1, J ), 1, B( 1, M ), 1 )
*
  180 CONTINUE
      GO TO ( 20, 90 )IFLOW
*
  190 CONTINUE
      ILO = K
      IHI = L
*
      IF( LSAME( JOB, 'P' ) ) THEN
         DO 195 I = ILO, IHI
            LSCALE( I ) = ONE
            RSCALE( I ) = ONE
  195    CONTINUE
         RETURN
      END IF
*
      IF( ILO.EQ.IHI )
     $   RETURN
*
*     Balance the submatrix in rows ILO to IHI.
*
      NR = IHI - ILO + 1
      DO 200 I = ILO, IHI
         RSCALE( I ) = ZERO
         LSCALE( I ) = ZERO
*
         WORK( I ) = ZERO
         WORK( I+N ) = ZERO
         WORK( I+2*N ) = ZERO
         WORK( I+3*N ) = ZERO
         WORK( I+4*N ) = ZERO
         WORK( I+5*N ) = ZERO
  200 CONTINUE
*
*     Compute right side vector in resulting linear equations
*
      BASL = LOG10( SCLFAC )
      DO 240 I = ILO, IHI
         DO 230 J = ILO, IHI
            TB = B( I, J )
            TA = A( I, J )
            IF( TA.EQ.ZERO )
     $         GO TO 210
            TA = LOG10( ABS( TA ) ) / BASL
  210       CONTINUE
            IF( TB.EQ.ZERO )
     $         GO TO 220
            TB = LOG10( ABS( TB ) ) / BASL
  220       CONTINUE
            WORK( I+4*N ) = WORK( I+4*N ) - TA - TB
            WORK( J+5*N ) = WORK( J+5*N ) - TA - TB
  230    CONTINUE
  240 CONTINUE
*
      COEF = ONE / DBLE( 2*NR )
      COEF2 = COEF*COEF
      COEF5 = HALF*COEF2
      NRP2 = NR + 2
      BETA = ZERO
      IT = 1
*
*     Start generalized conjugate gradient iteration
*
  250 CONTINUE
*
      GAMMA = DDOT( NR, WORK( ILO+4*N ), 1, WORK( ILO+4*N ), 1 ) +
     $        DDOT( NR, WORK( ILO+5*N ), 1, WORK( ILO+5*N ), 1 )
*
      EW = ZERO
      EWC = ZERO
      DO 260 I = ILO, IHI
         EW = EW + WORK( I+4*N )
         EWC = EWC + WORK( I+5*N )
  260 CONTINUE
*
      GAMMA = COEF*GAMMA - COEF2*( EW**2+EWC**2 ) - COEF5*( EW-EWC )**2
      IF( GAMMA.EQ.ZERO )
     $   GO TO 350
      IF( IT.NE.1 )
     $   BETA = GAMMA / PGAMMA
      T = COEF5*( EWC-THREE*EW )
      TC = COEF5*( EW-THREE*EWC )
*
      CALL DSCAL( NR, BETA, WORK( ILO ), 1 )
      CALL DSCAL( NR, BETA, WORK( ILO+N ), 1 )
*
      CALL DAXPY( NR, COEF, WORK( ILO+4*N ), 1, WORK( ILO+N ), 1 )
      CALL DAXPY( NR, COEF, WORK( ILO+5*N ), 1, WORK( ILO ), 1 )
*
      DO 270 I = ILO, IHI
         WORK( I ) = WORK( I ) + TC
         WORK( I+N ) = WORK( I+N ) + T
  270 CONTINUE
*
*     Apply matrix to vector
*
      DO 300 I = ILO, IHI
         KOUNT = 0
         SUM = ZERO
         DO 290 J = ILO, IHI
            IF( A( I, J ).EQ.ZERO )
     $         GO TO 280
            KOUNT = KOUNT + 1
            SUM = SUM + WORK( J )
  280       CONTINUE
            IF( B( I, J ).EQ.ZERO )
     $         GO TO 290
            KOUNT = KOUNT + 1
            SUM = SUM + WORK( J )
  290    CONTINUE
         WORK( I+2*N ) = DBLE( KOUNT )*WORK( I+N ) + SUM
  300 CONTINUE
*
      DO 330 J = ILO, IHI
         KOUNT = 0
         SUM = ZERO
         DO 320 I = ILO, IHI
            IF( A( I, J ).EQ.ZERO )
     $         GO TO 310
            KOUNT = KOUNT + 1
            SUM = SUM + WORK( I+N )
  310       CONTINUE
            IF( B( I, J ).EQ.ZERO )
     $         GO TO 320
            KOUNT = KOUNT + 1
            SUM = SUM + WORK( I+N )
  320    CONTINUE
         WORK( J+3*N ) = DBLE( KOUNT )*WORK( J ) + SUM
  330 CONTINUE
*
      SUM = DDOT( NR, WORK( ILO+N ), 1, WORK( ILO+2*N ), 1 ) +
     $      DDOT( NR, WORK( ILO ), 1, WORK( ILO+3*N ), 1 )
      ALPHA = GAMMA / SUM
*
*     Determine correction to current iteration
*
      CMAX = ZERO
      DO 340 I = ILO, IHI
         COR = ALPHA*WORK( I+N )
         IF( ABS( COR ).GT.CMAX )
     $      CMAX = ABS( COR )
         LSCALE( I ) = LSCALE( I ) + COR
         COR = ALPHA*WORK( I )
         IF( ABS( COR ).GT.CMAX )
     $      CMAX = ABS( COR )
         RSCALE( I ) = RSCALE( I ) + COR
  340 CONTINUE
      IF( CMAX.LT.HALF )
     $   GO TO 350
*
      CALL DAXPY( NR, -ALPHA, WORK( ILO+2*N ), 1, WORK( ILO+4*N ), 1 )
      CALL DAXPY( NR, -ALPHA, WORK( ILO+3*N ), 1, WORK( ILO+5*N ), 1 )
*
      PGAMMA = GAMMA
      IT = IT + 1
      IF( IT.LE.NRP2 )
     $   GO TO 250
*
*     End generalized conjugate gradient iteration
*
  350 CONTINUE
      SFMIN = DLAMCH( 'S' )
      SFMAX = ONE / SFMIN
      LSFMIN = INT( LOG10( SFMIN ) / BASL+ONE )
      LSFMAX = INT( LOG10( SFMAX ) / BASL )
      DO 360 I = ILO, IHI
         IRAB = IDAMAX( N-ILO+1, A( I, ILO ), LDA )
         RAB = ABS( A( I, IRAB+ILO-1 ) )
         IRAB = IDAMAX( N-ILO+1, B( I, ILO ), LDB )
         RAB = MAX( RAB, ABS( B( I, IRAB+ILO-1 ) ) )
         LRAB = INT( LOG10( RAB+SFMIN ) / BASL+ONE )
         IR = LSCALE( I ) + SIGN( HALF, LSCALE( I ) )
         IR = MIN( MAX( IR, LSFMIN ), LSFMAX, LSFMAX-LRAB )
         LSCALE( I ) = SCLFAC**IR
         ICAB = IDAMAX( IHI, A( 1, I ), 1 )
         CAB = ABS( A( ICAB, I ) )
         ICAB = IDAMAX( IHI, B( 1, I ), 1 )
         CAB = MAX( CAB, ABS( B( ICAB, I ) ) )
         LCAB = INT( LOG10( CAB+SFMIN ) / BASL+ONE )
         JC = RSCALE( I ) + SIGN( HALF, RSCALE( I ) )
         JC = MIN( MAX( JC, LSFMIN ), LSFMAX, LSFMAX-LCAB )
         RSCALE( I ) = SCLFAC**JC
  360 CONTINUE
*
*     Row scaling of matrices A and B
*
      DO 370 I = ILO, IHI
         CALL DSCAL( N-ILO+1, LSCALE( I ), A( I, ILO ), LDA )
         CALL DSCAL( N-ILO+1, LSCALE( I ), B( I, ILO ), LDB )
  370 CONTINUE
*
*     Column scaling of matrices A and B
*
      DO 380 J = ILO, IHI
         CALL DSCAL( IHI, RSCALE( J ), A( 1, J ), 1 )
         CALL DSCAL( IHI, RSCALE( J ), B( 1, J ), 1 )
  380 CONTINUE
*
      RETURN
*
*     End of DGGBAL
*
      END