summaryrefslogtreecommitdiff
path: root/2.3-1/src/fortran/lapack/dgetc2.f
blob: 5842b213a3dd4f030c7aea0915e0513a617525f1 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
      SUBROUTINE DGETC2( N, A, LDA, IPIV, JPIV, INFO )
*
*  -- LAPACK auxiliary routine (version 3.1) --
*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd..
*     November 2006
*
*     .. Scalar Arguments ..
      INTEGER            INFO, LDA, N
*     ..
*     .. Array Arguments ..
      INTEGER            IPIV( * ), JPIV( * )
      DOUBLE PRECISION   A( LDA, * )
*     ..
*
*  Purpose
*  =======
*
*  DGETC2 computes an LU factorization with complete pivoting of the
*  n-by-n matrix A. The factorization has the form A = P * L * U * Q,
*  where P and Q are permutation matrices, L is lower triangular with
*  unit diagonal elements and U is upper triangular.
*
*  This is the Level 2 BLAS algorithm.
*
*  Arguments
*  =========
*
*  N       (input) INTEGER
*          The order of the matrix A. N >= 0.
*
*  A       (input/output) DOUBLE PRECISION array, dimension (LDA, N)
*          On entry, the n-by-n matrix A to be factored.
*          On exit, the factors L and U from the factorization
*          A = P*L*U*Q; the unit diagonal elements of L are not stored.
*          If U(k, k) appears to be less than SMIN, U(k, k) is given the
*          value of SMIN, i.e., giving a nonsingular perturbed system.
*
*  LDA     (input) INTEGER
*          The leading dimension of the array A.  LDA >= max(1,N).
*
*  IPIV    (output) INTEGER array, dimension(N).
*          The pivot indices; for 1 <= i <= N, row i of the
*          matrix has been interchanged with row IPIV(i).
*
*  JPIV    (output) INTEGER array, dimension(N).
*          The pivot indices; for 1 <= j <= N, column j of the
*          matrix has been interchanged with column JPIV(j).
*
*  INFO    (output) INTEGER
*           = 0: successful exit
*           > 0: if INFO = k, U(k, k) is likely to produce owerflow if
*                we try to solve for x in Ax = b. So U is perturbed to
*                avoid the overflow.
*
*  Further Details
*  ===============
*
*  Based on contributions by
*     Bo Kagstrom and Peter Poromaa, Department of Computing Science,
*     Umea University, S-901 87 Umea, Sweden.
*
*  =====================================================================
*
*     .. Parameters ..
      DOUBLE PRECISION   ZERO, ONE
      PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0 )
*     ..
*     .. Local Scalars ..
      INTEGER            I, IP, IPV, J, JP, JPV
      DOUBLE PRECISION   BIGNUM, EPS, SMIN, SMLNUM, XMAX
*     ..
*     .. External Subroutines ..
      EXTERNAL           DGER, DSWAP
*     ..
*     .. External Functions ..
      DOUBLE PRECISION   DLAMCH
      EXTERNAL           DLAMCH
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          ABS, MAX
*     ..
*     .. Executable Statements ..
*
*     Set constants to control overflow
*
      INFO = 0
      EPS = DLAMCH( 'P' )
      SMLNUM = DLAMCH( 'S' ) / EPS
      BIGNUM = ONE / SMLNUM
      CALL DLABAD( SMLNUM, BIGNUM )
*
*     Factorize A using complete pivoting.
*     Set pivots less than SMIN to SMIN.
*
      DO 40 I = 1, N - 1
*
*        Find max element in matrix A
*
         XMAX = ZERO
         DO 20 IP = I, N
            DO 10 JP = I, N
               IF( ABS( A( IP, JP ) ).GE.XMAX ) THEN
                  XMAX = ABS( A( IP, JP ) )
                  IPV = IP
                  JPV = JP
               END IF
   10       CONTINUE
   20    CONTINUE
         IF( I.EQ.1 )
     $      SMIN = MAX( EPS*XMAX, SMLNUM )
*
*        Swap rows
*
         IF( IPV.NE.I )
     $      CALL DSWAP( N, A( IPV, 1 ), LDA, A( I, 1 ), LDA )
         IPIV( I ) = IPV
*
*        Swap columns
*
         IF( JPV.NE.I )
     $      CALL DSWAP( N, A( 1, JPV ), 1, A( 1, I ), 1 )
         JPIV( I ) = JPV
*
*        Check for singularity
*
         IF( ABS( A( I, I ) ).LT.SMIN ) THEN
            INFO = I
            A( I, I ) = SMIN
         END IF
         DO 30 J = I + 1, N
            A( J, I ) = A( J, I ) / A( I, I )
   30    CONTINUE
         CALL DGER( N-I, N-I, -ONE, A( I+1, I ), 1, A( I, I+1 ), LDA,
     $              A( I+1, I+1 ), LDA )
   40 CONTINUE
*
      IF( ABS( A( N, N ) ).LT.SMIN ) THEN
         INFO = N
         A( N, N ) = SMIN
      END IF
*
      RETURN
*
*     End of DGETC2
*
      END