1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
|
SUBROUTINE DGELSX( M, N, NRHS, A, LDA, B, LDB, JPVT, RCOND, RANK,
$ WORK, INFO )
*
* -- LAPACK driver routine (version 3.1) --
* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd..
* November 2006
*
* .. Scalar Arguments ..
INTEGER INFO, LDA, LDB, M, N, NRHS, RANK
DOUBLE PRECISION RCOND
* ..
* .. Array Arguments ..
INTEGER JPVT( * )
DOUBLE PRECISION A( LDA, * ), B( LDB, * ), WORK( * )
* ..
*
* Purpose
* =======
*
* This routine is deprecated and has been replaced by routine DGELSY.
*
* DGELSX computes the minimum-norm solution to a real linear least
* squares problem:
* minimize || A * X - B ||
* using a complete orthogonal factorization of A. A is an M-by-N
* matrix which may be rank-deficient.
*
* Several right hand side vectors b and solution vectors x can be
* handled in a single call; they are stored as the columns of the
* M-by-NRHS right hand side matrix B and the N-by-NRHS solution
* matrix X.
*
* The routine first computes a QR factorization with column pivoting:
* A * P = Q * [ R11 R12 ]
* [ 0 R22 ]
* with R11 defined as the largest leading submatrix whose estimated
* condition number is less than 1/RCOND. The order of R11, RANK,
* is the effective rank of A.
*
* Then, R22 is considered to be negligible, and R12 is annihilated
* by orthogonal transformations from the right, arriving at the
* complete orthogonal factorization:
* A * P = Q * [ T11 0 ] * Z
* [ 0 0 ]
* The minimum-norm solution is then
* X = P * Z' [ inv(T11)*Q1'*B ]
* [ 0 ]
* where Q1 consists of the first RANK columns of Q.
*
* Arguments
* =========
*
* M (input) INTEGER
* The number of rows of the matrix A. M >= 0.
*
* N (input) INTEGER
* The number of columns of the matrix A. N >= 0.
*
* NRHS (input) INTEGER
* The number of right hand sides, i.e., the number of
* columns of matrices B and X. NRHS >= 0.
*
* A (input/output) DOUBLE PRECISION array, dimension (LDA,N)
* On entry, the M-by-N matrix A.
* On exit, A has been overwritten by details of its
* complete orthogonal factorization.
*
* LDA (input) INTEGER
* The leading dimension of the array A. LDA >= max(1,M).
*
* B (input/output) DOUBLE PRECISION array, dimension (LDB,NRHS)
* On entry, the M-by-NRHS right hand side matrix B.
* On exit, the N-by-NRHS solution matrix X.
* If m >= n and RANK = n, the residual sum-of-squares for
* the solution in the i-th column is given by the sum of
* squares of elements N+1:M in that column.
*
* LDB (input) INTEGER
* The leading dimension of the array B. LDB >= max(1,M,N).
*
* JPVT (input/output) INTEGER array, dimension (N)
* On entry, if JPVT(i) .ne. 0, the i-th column of A is an
* initial column, otherwise it is a free column. Before
* the QR factorization of A, all initial columns are
* permuted to the leading positions; only the remaining
* free columns are moved as a result of column pivoting
* during the factorization.
* On exit, if JPVT(i) = k, then the i-th column of A*P
* was the k-th column of A.
*
* RCOND (input) DOUBLE PRECISION
* RCOND is used to determine the effective rank of A, which
* is defined as the order of the largest leading triangular
* submatrix R11 in the QR factorization with pivoting of A,
* whose estimated condition number < 1/RCOND.
*
* RANK (output) INTEGER
* The effective rank of A, i.e., the order of the submatrix
* R11. This is the same as the order of the submatrix T11
* in the complete orthogonal factorization of A.
*
* WORK (workspace) DOUBLE PRECISION array, dimension
* (max( min(M,N)+3*N, 2*min(M,N)+NRHS )),
*
* INFO (output) INTEGER
* = 0: successful exit
* < 0: if INFO = -i, the i-th argument had an illegal value
*
* =====================================================================
*
* .. Parameters ..
INTEGER IMAX, IMIN
PARAMETER ( IMAX = 1, IMIN = 2 )
DOUBLE PRECISION ZERO, ONE, DONE, NTDONE
PARAMETER ( ZERO = 0.0D0, ONE = 1.0D0, DONE = ZERO,
$ NTDONE = ONE )
* ..
* .. Local Scalars ..
INTEGER I, IASCL, IBSCL, ISMAX, ISMIN, J, K, MN
DOUBLE PRECISION ANRM, BIGNUM, BNRM, C1, C2, S1, S2, SMAX,
$ SMAXPR, SMIN, SMINPR, SMLNUM, T1, T2
* ..
* .. External Functions ..
DOUBLE PRECISION DLAMCH, DLANGE
EXTERNAL DLAMCH, DLANGE
* ..
* .. External Subroutines ..
EXTERNAL DGEQPF, DLAIC1, DLASCL, DLASET, DLATZM, DORM2R,
$ DTRSM, DTZRQF, XERBLA
* ..
* .. Intrinsic Functions ..
INTRINSIC ABS, MAX, MIN
* ..
* .. Executable Statements ..
*
MN = MIN( M, N )
ISMIN = MN + 1
ISMAX = 2*MN + 1
*
* Test the input arguments.
*
INFO = 0
IF( M.LT.0 ) THEN
INFO = -1
ELSE IF( N.LT.0 ) THEN
INFO = -2
ELSE IF( NRHS.LT.0 ) THEN
INFO = -3
ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
INFO = -5
ELSE IF( LDB.LT.MAX( 1, M, N ) ) THEN
INFO = -7
END IF
*
IF( INFO.NE.0 ) THEN
CALL XERBLA( 'DGELSX', -INFO )
RETURN
END IF
*
* Quick return if possible
*
IF( MIN( M, N, NRHS ).EQ.0 ) THEN
RANK = 0
RETURN
END IF
*
* Get machine parameters
*
SMLNUM = DLAMCH( 'S' ) / DLAMCH( 'P' )
BIGNUM = ONE / SMLNUM
CALL DLABAD( SMLNUM, BIGNUM )
*
* Scale A, B if max elements outside range [SMLNUM,BIGNUM]
*
ANRM = DLANGE( 'M', M, N, A, LDA, WORK )
IASCL = 0
IF( ANRM.GT.ZERO .AND. ANRM.LT.SMLNUM ) THEN
*
* Scale matrix norm up to SMLNUM
*
CALL DLASCL( 'G', 0, 0, ANRM, SMLNUM, M, N, A, LDA, INFO )
IASCL = 1
ELSE IF( ANRM.GT.BIGNUM ) THEN
*
* Scale matrix norm down to BIGNUM
*
CALL DLASCL( 'G', 0, 0, ANRM, BIGNUM, M, N, A, LDA, INFO )
IASCL = 2
ELSE IF( ANRM.EQ.ZERO ) THEN
*
* Matrix all zero. Return zero solution.
*
CALL DLASET( 'F', MAX( M, N ), NRHS, ZERO, ZERO, B, LDB )
RANK = 0
GO TO 100
END IF
*
BNRM = DLANGE( 'M', M, NRHS, B, LDB, WORK )
IBSCL = 0
IF( BNRM.GT.ZERO .AND. BNRM.LT.SMLNUM ) THEN
*
* Scale matrix norm up to SMLNUM
*
CALL DLASCL( 'G', 0, 0, BNRM, SMLNUM, M, NRHS, B, LDB, INFO )
IBSCL = 1
ELSE IF( BNRM.GT.BIGNUM ) THEN
*
* Scale matrix norm down to BIGNUM
*
CALL DLASCL( 'G', 0, 0, BNRM, BIGNUM, M, NRHS, B, LDB, INFO )
IBSCL = 2
END IF
*
* Compute QR factorization with column pivoting of A:
* A * P = Q * R
*
CALL DGEQPF( M, N, A, LDA, JPVT, WORK( 1 ), WORK( MN+1 ), INFO )
*
* workspace 3*N. Details of Householder rotations stored
* in WORK(1:MN).
*
* Determine RANK using incremental condition estimation
*
WORK( ISMIN ) = ONE
WORK( ISMAX ) = ONE
SMAX = ABS( A( 1, 1 ) )
SMIN = SMAX
IF( ABS( A( 1, 1 ) ).EQ.ZERO ) THEN
RANK = 0
CALL DLASET( 'F', MAX( M, N ), NRHS, ZERO, ZERO, B, LDB )
GO TO 100
ELSE
RANK = 1
END IF
*
10 CONTINUE
IF( RANK.LT.MN ) THEN
I = RANK + 1
CALL DLAIC1( IMIN, RANK, WORK( ISMIN ), SMIN, A( 1, I ),
$ A( I, I ), SMINPR, S1, C1 )
CALL DLAIC1( IMAX, RANK, WORK( ISMAX ), SMAX, A( 1, I ),
$ A( I, I ), SMAXPR, S2, C2 )
*
IF( SMAXPR*RCOND.LE.SMINPR ) THEN
DO 20 I = 1, RANK
WORK( ISMIN+I-1 ) = S1*WORK( ISMIN+I-1 )
WORK( ISMAX+I-1 ) = S2*WORK( ISMAX+I-1 )
20 CONTINUE
WORK( ISMIN+RANK ) = C1
WORK( ISMAX+RANK ) = C2
SMIN = SMINPR
SMAX = SMAXPR
RANK = RANK + 1
GO TO 10
END IF
END IF
*
* Logically partition R = [ R11 R12 ]
* [ 0 R22 ]
* where R11 = R(1:RANK,1:RANK)
*
* [R11,R12] = [ T11, 0 ] * Y
*
IF( RANK.LT.N )
$ CALL DTZRQF( RANK, N, A, LDA, WORK( MN+1 ), INFO )
*
* Details of Householder rotations stored in WORK(MN+1:2*MN)
*
* B(1:M,1:NRHS) := Q' * B(1:M,1:NRHS)
*
CALL DORM2R( 'Left', 'Transpose', M, NRHS, MN, A, LDA, WORK( 1 ),
$ B, LDB, WORK( 2*MN+1 ), INFO )
*
* workspace NRHS
*
* B(1:RANK,1:NRHS) := inv(T11) * B(1:RANK,1:NRHS)
*
CALL DTRSM( 'Left', 'Upper', 'No transpose', 'Non-unit', RANK,
$ NRHS, ONE, A, LDA, B, LDB )
*
DO 40 I = RANK + 1, N
DO 30 J = 1, NRHS
B( I, J ) = ZERO
30 CONTINUE
40 CONTINUE
*
* B(1:N,1:NRHS) := Y' * B(1:N,1:NRHS)
*
IF( RANK.LT.N ) THEN
DO 50 I = 1, RANK
CALL DLATZM( 'Left', N-RANK+1, NRHS, A( I, RANK+1 ), LDA,
$ WORK( MN+I ), B( I, 1 ), B( RANK+1, 1 ), LDB,
$ WORK( 2*MN+1 ) )
50 CONTINUE
END IF
*
* workspace NRHS
*
* B(1:N,1:NRHS) := P * B(1:N,1:NRHS)
*
DO 90 J = 1, NRHS
DO 60 I = 1, N
WORK( 2*MN+I ) = NTDONE
60 CONTINUE
DO 80 I = 1, N
IF( WORK( 2*MN+I ).EQ.NTDONE ) THEN
IF( JPVT( I ).NE.I ) THEN
K = I
T1 = B( K, J )
T2 = B( JPVT( K ), J )
70 CONTINUE
B( JPVT( K ), J ) = T1
WORK( 2*MN+K ) = DONE
T1 = T2
K = JPVT( K )
T2 = B( JPVT( K ), J )
IF( JPVT( K ).NE.I )
$ GO TO 70
B( I, J ) = T1
WORK( 2*MN+K ) = DONE
END IF
END IF
80 CONTINUE
90 CONTINUE
*
* Undo scaling
*
IF( IASCL.EQ.1 ) THEN
CALL DLASCL( 'G', 0, 0, ANRM, SMLNUM, N, NRHS, B, LDB, INFO )
CALL DLASCL( 'U', 0, 0, SMLNUM, ANRM, RANK, RANK, A, LDA,
$ INFO )
ELSE IF( IASCL.EQ.2 ) THEN
CALL DLASCL( 'G', 0, 0, ANRM, BIGNUM, N, NRHS, B, LDB, INFO )
CALL DLASCL( 'U', 0, 0, BIGNUM, ANRM, RANK, RANK, A, LDA,
$ INFO )
END IF
IF( IBSCL.EQ.1 ) THEN
CALL DLASCL( 'G', 0, 0, SMLNUM, BNRM, N, NRHS, B, LDB, INFO )
ELSE IF( IBSCL.EQ.2 ) THEN
CALL DLASCL( 'G', 0, 0, BIGNUM, BNRM, N, NRHS, B, LDB, INFO )
END IF
*
100 CONTINUE
*
RETURN
*
* End of DGELSX
*
END
|