1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
|
SUBROUTINE ZHPR2 ( UPLO, N, ALPHA, X, INCX, Y, INCY, AP )
* .. Scalar Arguments ..
COMPLEX*16 ALPHA
INTEGER INCX, INCY, N
CHARACTER*1 UPLO
* .. Array Arguments ..
COMPLEX*16 AP( * ), X( * ), Y( * )
* ..
*
* Purpose
* =======
*
* ZHPR2 performs the hermitian rank 2 operation
*
* A := alpha*x*conjg( y' ) + conjg( alpha )*y*conjg( x' ) + A,
*
* where alpha is a scalar, x and y are n element vectors and A is an
* n by n hermitian matrix, supplied in packed form.
*
* Parameters
* ==========
*
* UPLO - CHARACTER*1.
* On entry, UPLO specifies whether the upper or lower
* triangular part of the matrix A is supplied in the packed
* array AP as follows:
*
* UPLO = 'U' or 'u' The upper triangular part of A is
* supplied in AP.
*
* UPLO = 'L' or 'l' The lower triangular part of A is
* supplied in AP.
*
* Unchanged on exit.
*
* N - INTEGER.
* On entry, N specifies the order of the matrix A.
* N must be at least zero.
* Unchanged on exit.
*
* ALPHA - COMPLEX*16 .
* On entry, ALPHA specifies the scalar alpha.
* Unchanged on exit.
*
* X - COMPLEX*16 array of dimension at least
* ( 1 + ( n - 1 )*abs( INCX ) ).
* Before entry, the incremented array X must contain the n
* element vector x.
* Unchanged on exit.
*
* INCX - INTEGER.
* On entry, INCX specifies the increment for the elements of
* X. INCX must not be zero.
* Unchanged on exit.
*
* Y - COMPLEX*16 array of dimension at least
* ( 1 + ( n - 1 )*abs( INCY ) ).
* Before entry, the incremented array Y must contain the n
* element vector y.
* Unchanged on exit.
*
* INCY - INTEGER.
* On entry, INCY specifies the increment for the elements of
* Y. INCY must not be zero.
* Unchanged on exit.
*
* AP - COMPLEX*16 array of DIMENSION at least
* ( ( n*( n + 1 ) )/2 ).
* Before entry with UPLO = 'U' or 'u', the array AP must
* contain the upper triangular part of the hermitian matrix
* packed sequentially, column by column, so that AP( 1 )
* contains a( 1, 1 ), AP( 2 ) and AP( 3 ) contain a( 1, 2 )
* and a( 2, 2 ) respectively, and so on. On exit, the array
* AP is overwritten by the upper triangular part of the
* updated matrix.
* Before entry with UPLO = 'L' or 'l', the array AP must
* contain the lower triangular part of the hermitian matrix
* packed sequentially, column by column, so that AP( 1 )
* contains a( 1, 1 ), AP( 2 ) and AP( 3 ) contain a( 2, 1 )
* and a( 3, 1 ) respectively, and so on. On exit, the array
* AP is overwritten by the lower triangular part of the
* updated matrix.
* Note that the imaginary parts of the diagonal elements need
* not be set, they are assumed to be zero, and on exit they
* are set to zero.
*
*
* Level 2 Blas routine.
*
* -- Written on 22-October-1986.
* Jack Dongarra, Argonne National Lab.
* Jeremy Du Croz, Nag Central Office.
* Sven Hammarling, Nag Central Office.
* Richard Hanson, Sandia National Labs.
*
*
* .. Parameters ..
COMPLEX*16 ZERO
PARAMETER ( ZERO = ( 0.0D+0, 0.0D+0 ) )
* .. Local Scalars ..
COMPLEX*16 TEMP1, TEMP2
INTEGER I, INFO, IX, IY, J, JX, JY, K, KK, KX, KY
* .. External Functions ..
LOGICAL LSAME
EXTERNAL LSAME
* .. External Subroutines ..
EXTERNAL XERBLA
* .. Intrinsic Functions ..
INTRINSIC DCONJG, DBLE
* ..
* .. Executable Statements ..
*
* Test the input parameters.
*
INFO = 0
IF ( .NOT.LSAME( UPLO, 'U' ).AND.
$ .NOT.LSAME( UPLO, 'L' ) )THEN
INFO = 1
ELSE IF( N.LT.0 )THEN
INFO = 2
ELSE IF( INCX.EQ.0 )THEN
INFO = 5
ELSE IF( INCY.EQ.0 )THEN
INFO = 7
END IF
IF( INFO.NE.0 )THEN
CALL XERBLA( 'ZHPR2 ', INFO )
RETURN
END IF
*
* Quick return if possible.
*
IF( ( N.EQ.0 ).OR.( ALPHA.EQ.ZERO ) )
$ RETURN
*
* Set up the start points in X and Y if the increments are not both
* unity.
*
IF( ( INCX.NE.1 ).OR.( INCY.NE.1 ) )THEN
IF( INCX.GT.0 )THEN
KX = 1
ELSE
KX = 1 - ( N - 1 )*INCX
END IF
IF( INCY.GT.0 )THEN
KY = 1
ELSE
KY = 1 - ( N - 1 )*INCY
END IF
JX = KX
JY = KY
END IF
*
* Start the operations. In this version the elements of the array AP
* are accessed sequentially with one pass through AP.
*
KK = 1
IF( LSAME( UPLO, 'U' ) )THEN
*
* Form A when upper triangle is stored in AP.
*
IF( ( INCX.EQ.1 ).AND.( INCY.EQ.1 ) )THEN
DO 20, J = 1, N
IF( ( X( J ).NE.ZERO ).OR.( Y( J ).NE.ZERO ) )THEN
TEMP1 = ALPHA*DCONJG( Y( J ) )
TEMP2 = DCONJG( ALPHA*X( J ) )
K = KK
DO 10, I = 1, J - 1
AP( K ) = AP( K ) + X( I )*TEMP1 + Y( I )*TEMP2
K = K + 1
10 CONTINUE
AP( KK + J - 1 ) = DBLE( AP( KK + J - 1 ) ) +
$ DBLE( X( J )*TEMP1 + Y( J )*TEMP2 )
ELSE
AP( KK + J - 1 ) = DBLE( AP( KK + J - 1 ) )
END IF
KK = KK + J
20 CONTINUE
ELSE
DO 40, J = 1, N
IF( ( X( JX ).NE.ZERO ).OR.( Y( JY ).NE.ZERO ) )THEN
TEMP1 = ALPHA*DCONJG( Y( JY ) )
TEMP2 = DCONJG( ALPHA*X( JX ) )
IX = KX
IY = KY
DO 30, K = KK, KK + J - 2
AP( K ) = AP( K ) + X( IX )*TEMP1 + Y( IY )*TEMP2
IX = IX + INCX
IY = IY + INCY
30 CONTINUE
AP( KK + J - 1 ) = DBLE( AP( KK + J - 1 ) ) +
$ DBLE( X( JX )*TEMP1 +
$ Y( JY )*TEMP2 )
ELSE
AP( KK + J - 1 ) = DBLE( AP( KK + J - 1 ) )
END IF
JX = JX + INCX
JY = JY + INCY
KK = KK + J
40 CONTINUE
END IF
ELSE
*
* Form A when lower triangle is stored in AP.
*
IF( ( INCX.EQ.1 ).AND.( INCY.EQ.1 ) )THEN
DO 60, J = 1, N
IF( ( X( J ).NE.ZERO ).OR.( Y( J ).NE.ZERO ) )THEN
TEMP1 = ALPHA*DCONJG( Y( J ) )
TEMP2 = DCONJG( ALPHA*X( J ) )
AP( KK ) = DBLE( AP( KK ) ) +
$ DBLE( X( J )*TEMP1 + Y( J )*TEMP2 )
K = KK + 1
DO 50, I = J + 1, N
AP( K ) = AP( K ) + X( I )*TEMP1 + Y( I )*TEMP2
K = K + 1
50 CONTINUE
ELSE
AP( KK ) = DBLE( AP( KK ) )
END IF
KK = KK + N - J + 1
60 CONTINUE
ELSE
DO 80, J = 1, N
IF( ( X( JX ).NE.ZERO ).OR.( Y( JY ).NE.ZERO ) )THEN
TEMP1 = ALPHA*DCONJG( Y( JY ) )
TEMP2 = DCONJG( ALPHA*X( JX ) )
AP( KK ) = DBLE( AP( KK ) ) +
$ DBLE( X( JX )*TEMP1 + Y( JY )*TEMP2 )
IX = JX
IY = JY
DO 70, K = KK + 1, KK + N - J
IX = IX + INCX
IY = IY + INCY
AP( K ) = AP( K ) + X( IX )*TEMP1 + Y( IY )*TEMP2
70 CONTINUE
ELSE
AP( KK ) = DBLE( AP( KK ) )
END IF
JX = JX + INCX
JY = JY + INCY
KK = KK + N - J + 1
80 CONTINUE
END IF
END IF
*
RETURN
*
* End of ZHPR2 .
*
END
|