summaryrefslogtreecommitdiff
path: root/2.3-1/src/fortran/blas/zhpr.f
blob: 2e368de49745b7477ea952f18928a343b5b9cf07 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
      SUBROUTINE ZHPR  ( UPLO, N, ALPHA, X, INCX, AP )
*     .. Scalar Arguments ..
      DOUBLE PRECISION   ALPHA
      INTEGER            INCX, N
      CHARACTER*1        UPLO
*     .. Array Arguments ..
      COMPLEX*16         AP( * ), X( * )
*     ..
*
*  Purpose
*  =======
*
*  ZHPR    performs the hermitian rank 1 operation
*
*     A := alpha*x*conjg( x' ) + A,
*
*  where alpha is a real scalar, x is an n element vector and A is an
*  n by n hermitian matrix, supplied in packed form.
*
*  Parameters
*  ==========
*
*  UPLO   - CHARACTER*1.
*           On entry, UPLO specifies whether the upper or lower
*           triangular part of the matrix A is supplied in the packed
*           array AP as follows:
*
*              UPLO = 'U' or 'u'   The upper triangular part of A is
*                                  supplied in AP.
*
*              UPLO = 'L' or 'l'   The lower triangular part of A is
*                                  supplied in AP.
*
*           Unchanged on exit.
*
*  N      - INTEGER.
*           On entry, N specifies the order of the matrix A.
*           N must be at least zero.
*           Unchanged on exit.
*
*  ALPHA  - DOUBLE PRECISION.
*           On entry, ALPHA specifies the scalar alpha.
*           Unchanged on exit.
*
*  X      - COMPLEX*16       array of dimension at least
*           ( 1 + ( n - 1 )*abs( INCX ) ).
*           Before entry, the incremented array X must contain the n
*           element vector x.
*           Unchanged on exit.
*
*  INCX   - INTEGER.
*           On entry, INCX specifies the increment for the elements of
*           X. INCX must not be zero.
*           Unchanged on exit.
*
*  AP     - COMPLEX*16       array of DIMENSION at least
*           ( ( n*( n + 1 ) )/2 ).
*           Before entry with  UPLO = 'U' or 'u', the array AP must
*           contain the upper triangular part of the hermitian matrix
*           packed sequentially, column by column, so that AP( 1 )
*           contains a( 1, 1 ), AP( 2 ) and AP( 3 ) contain a( 1, 2 )
*           and a( 2, 2 ) respectively, and so on. On exit, the array
*           AP is overwritten by the upper triangular part of the
*           updated matrix.
*           Before entry with UPLO = 'L' or 'l', the array AP must
*           contain the lower triangular part of the hermitian matrix
*           packed sequentially, column by column, so that AP( 1 )
*           contains a( 1, 1 ), AP( 2 ) and AP( 3 ) contain a( 2, 1 )
*           and a( 3, 1 ) respectively, and so on. On exit, the array
*           AP is overwritten by the lower triangular part of the
*           updated matrix.
*           Note that the imaginary parts of the diagonal elements need
*           not be set, they are assumed to be zero, and on exit they
*           are set to zero.
*
*
*  Level 2 Blas routine.
*
*  -- Written on 22-October-1986.
*     Jack Dongarra, Argonne National Lab.
*     Jeremy Du Croz, Nag Central Office.
*     Sven Hammarling, Nag Central Office.
*     Richard Hanson, Sandia National Labs.
*
*
*     .. Parameters ..
      COMPLEX*16         ZERO
      PARAMETER        ( ZERO = ( 0.0D+0, 0.0D+0 ) )
*     .. Local Scalars ..
      COMPLEX*16         TEMP
      INTEGER            I, INFO, IX, J, JX, K, KK, KX
*     .. External Functions ..
      LOGICAL            LSAME
      EXTERNAL           LSAME
*     .. External Subroutines ..
      EXTERNAL           XERBLA
*     .. Intrinsic Functions ..
      INTRINSIC          DCONJG, DBLE
*     ..
*     .. Executable Statements ..
*
*     Test the input parameters.
*
      INFO = 0
      IF     ( .NOT.LSAME( UPLO, 'U' ).AND.
     $         .NOT.LSAME( UPLO, 'L' )      )THEN
         INFO = 1
      ELSE IF( N.LT.0 )THEN
         INFO = 2
      ELSE IF( INCX.EQ.0 )THEN
         INFO = 5
      END IF
      IF( INFO.NE.0 )THEN
         CALL XERBLA( 'ZHPR  ', INFO )
         RETURN
      END IF
*
*     Quick return if possible.
*
      IF( ( N.EQ.0 ).OR.( ALPHA.EQ.DBLE( ZERO ) ) )
     $   RETURN
*
*     Set the start point in X if the increment is not unity.
*
      IF( INCX.LE.0 )THEN
         KX = 1 - ( N - 1 )*INCX
      ELSE IF( INCX.NE.1 )THEN
         KX = 1
      END IF
*
*     Start the operations. In this version the elements of the array AP
*     are accessed sequentially with one pass through AP.
*
      KK = 1
      IF( LSAME( UPLO, 'U' ) )THEN
*
*        Form  A  when upper triangle is stored in AP.
*
         IF( INCX.EQ.1 )THEN
            DO 20, J = 1, N
               IF( X( J ).NE.ZERO )THEN
                  TEMP = ALPHA*DCONJG( X( J ) )
                  K    = KK
                  DO 10, I = 1, J - 1
                     AP( K ) = AP( K ) + X( I )*TEMP
                     K       = K       + 1
   10             CONTINUE
                  AP( KK + J - 1 ) = DBLE( AP( KK + J - 1 ) )
     $                               + DBLE( X( J )*TEMP )
               ELSE
                  AP( KK + J - 1 ) = DBLE( AP( KK + J - 1 ) )
               END IF
               KK = KK + J
   20       CONTINUE
         ELSE
            JX = KX
            DO 40, J = 1, N
               IF( X( JX ).NE.ZERO )THEN
                  TEMP = ALPHA*DCONJG( X( JX ) )
                  IX   = KX
                  DO 30, K = KK, KK + J - 2
                     AP( K ) = AP( K ) + X( IX )*TEMP
                     IX      = IX      + INCX
   30             CONTINUE
                  AP( KK + J - 1 ) = DBLE( AP( KK + J - 1 ) )
     $                               + DBLE( X( JX )*TEMP )
               ELSE
                  AP( KK + J - 1 ) = DBLE( AP( KK + J - 1 ) )
               END IF
               JX = JX + INCX
               KK = KK + J
   40       CONTINUE
         END IF
      ELSE
*
*        Form  A  when lower triangle is stored in AP.
*
         IF( INCX.EQ.1 )THEN
            DO 60, J = 1, N
               IF( X( J ).NE.ZERO )THEN
                  TEMP     = ALPHA*DCONJG( X( J ) )
                  AP( KK ) = DBLE( AP( KK ) ) + DBLE( TEMP*X( J ) )
                  K        = KK               + 1
                  DO 50, I = J + 1, N
                     AP( K ) = AP( K ) + X( I )*TEMP
                     K       = K       + 1
   50             CONTINUE
               ELSE
                  AP( KK ) = DBLE( AP( KK ) )
               END IF
               KK = KK + N - J + 1
   60       CONTINUE
         ELSE
            JX = KX
            DO 80, J = 1, N
               IF( X( JX ).NE.ZERO )THEN
                  TEMP    = ALPHA*DCONJG( X( JX ) )
                  AP( KK ) = DBLE( AP( KK ) ) + DBLE( TEMP*X( JX ) )
                  IX      = JX
                  DO 70, K = KK + 1, KK + N - J
                     IX      = IX      + INCX
                     AP( K ) = AP( K ) + X( IX )*TEMP
   70             CONTINUE
               ELSE
                  AP( KK ) = DBLE( AP( KK ) )
               END IF
               JX = JX + INCX
               KK = KK + N - J + 1
   80       CONTINUE
         END IF
      END IF
*
      RETURN
*
*     End of ZHPR  .
*
      END