summaryrefslogtreecommitdiff
path: root/2.3-1/src/fortran/blas/dtpmv.f
blob: ee11bc1b035e8491b6ae1d4c1b904909da4540e3 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
      SUBROUTINE DTPMV ( UPLO, TRANS, DIAG, N, AP, X, INCX )
*     .. Scalar Arguments ..
      INTEGER            INCX, N
      CHARACTER*1        DIAG, TRANS, UPLO
*     .. Array Arguments ..
      DOUBLE PRECISION   AP( * ), X( * )
*     ..
*
*  Purpose
*  =======
*
*  DTPMV  performs one of the matrix-vector operations
*
*     x := A*x,   or   x := A'*x,
*
*  where x is an n element vector and  A is an n by n unit, or non-unit,
*  upper or lower triangular matrix, supplied in packed form.
*
*  Parameters
*  ==========
*
*  UPLO   - CHARACTER*1.
*           On entry, UPLO specifies whether the matrix is an upper or
*           lower triangular matrix as follows:
*
*              UPLO = 'U' or 'u'   A is an upper triangular matrix.
*
*              UPLO = 'L' or 'l'   A is a lower triangular matrix.
*
*           Unchanged on exit.
*
*  TRANS  - CHARACTER*1.
*           On entry, TRANS specifies the operation to be performed as
*           follows:
*
*              TRANS = 'N' or 'n'   x := A*x.
*
*              TRANS = 'T' or 't'   x := A'*x.
*
*              TRANS = 'C' or 'c'   x := A'*x.
*
*           Unchanged on exit.
*
*  DIAG   - CHARACTER*1.
*           On entry, DIAG specifies whether or not A is unit
*           triangular as follows:
*
*              DIAG = 'U' or 'u'   A is assumed to be unit triangular.
*
*              DIAG = 'N' or 'n'   A is not assumed to be unit
*                                  triangular.
*
*           Unchanged on exit.
*
*  N      - INTEGER.
*           On entry, N specifies the order of the matrix A.
*           N must be at least zero.
*           Unchanged on exit.
*
*  AP     - DOUBLE PRECISION array of DIMENSION at least
*           ( ( n*( n + 1 ) )/2 ).
*           Before entry with  UPLO = 'U' or 'u', the array AP must
*           contain the upper triangular matrix packed sequentially,
*           column by column, so that AP( 1 ) contains a( 1, 1 ),
*           AP( 2 ) and AP( 3 ) contain a( 1, 2 ) and a( 2, 2 )
*           respectively, and so on.
*           Before entry with UPLO = 'L' or 'l', the array AP must
*           contain the lower triangular matrix packed sequentially,
*           column by column, so that AP( 1 ) contains a( 1, 1 ),
*           AP( 2 ) and AP( 3 ) contain a( 2, 1 ) and a( 3, 1 )
*           respectively, and so on.
*           Note that when  DIAG = 'U' or 'u', the diagonal elements of
*           A are not referenced, but are assumed to be unity.
*           Unchanged on exit.
*
*  X      - DOUBLE PRECISION array of dimension at least
*           ( 1 + ( n - 1 )*abs( INCX ) ).
*           Before entry, the incremented array X must contain the n
*           element vector x. On exit, X is overwritten with the
*           tranformed vector x.
*
*  INCX   - INTEGER.
*           On entry, INCX specifies the increment for the elements of
*           X. INCX must not be zero.
*           Unchanged on exit.
*
*
*  Level 2 Blas routine.
*
*  -- Written on 22-October-1986.
*     Jack Dongarra, Argonne National Lab.
*     Jeremy Du Croz, Nag Central Office.
*     Sven Hammarling, Nag Central Office.
*     Richard Hanson, Sandia National Labs.
*
*
*     .. Parameters ..
      DOUBLE PRECISION   ZERO
      PARAMETER        ( ZERO = 0.0D+0 )
*     .. Local Scalars ..
      DOUBLE PRECISION   TEMP
      INTEGER            I, INFO, IX, J, JX, K, KK, KX
      LOGICAL            NOUNIT
*     .. External Functions ..
      LOGICAL            LSAME
      EXTERNAL           LSAME
*     .. External Subroutines ..
      EXTERNAL           XERBLA
*     ..
*     .. Executable Statements ..
*
*     Test the input parameters.
*
      INFO = 0
      IF     ( .NOT.LSAME( UPLO , 'U' ).AND.
     $         .NOT.LSAME( UPLO , 'L' )      )THEN
         INFO = 1
      ELSE IF( .NOT.LSAME( TRANS, 'N' ).AND.
     $         .NOT.LSAME( TRANS, 'T' ).AND.
     $         .NOT.LSAME( TRANS, 'C' )      )THEN
         INFO = 2
      ELSE IF( .NOT.LSAME( DIAG , 'U' ).AND.
     $         .NOT.LSAME( DIAG , 'N' )      )THEN
         INFO = 3
      ELSE IF( N.LT.0 )THEN
         INFO = 4
      ELSE IF( INCX.EQ.0 )THEN
         INFO = 7
      END IF
      IF( INFO.NE.0 )THEN
         CALL XERBLA( 'DTPMV ', INFO )
         RETURN
      END IF
*
*     Quick return if possible.
*
      IF( N.EQ.0 )
     $   RETURN
*
      NOUNIT = LSAME( DIAG, 'N' )
*
*     Set up the start point in X if the increment is not unity. This
*     will be  ( N - 1 )*INCX  too small for descending loops.
*
      IF( INCX.LE.0 )THEN
         KX = 1 - ( N - 1 )*INCX
      ELSE IF( INCX.NE.1 )THEN
         KX = 1
      END IF
*
*     Start the operations. In this version the elements of AP are
*     accessed sequentially with one pass through AP.
*
      IF( LSAME( TRANS, 'N' ) )THEN
*
*        Form  x:= A*x.
*
         IF( LSAME( UPLO, 'U' ) )THEN
            KK =1
            IF( INCX.EQ.1 )THEN
               DO 20, J = 1, N
                  IF( X( J ).NE.ZERO )THEN
                     TEMP = X( J )
                     K    = KK
                     DO 10, I = 1, J - 1
                        X( I ) = X( I ) + TEMP*AP( K )
                        K      = K      + 1
   10                CONTINUE
                     IF( NOUNIT )
     $                  X( J ) = X( J )*AP( KK + J - 1 )
                  END IF
                  KK = KK + J
   20          CONTINUE
            ELSE
               JX = KX
               DO 40, J = 1, N
                  IF( X( JX ).NE.ZERO )THEN
                     TEMP = X( JX )
                     IX   = KX
                     DO 30, K = KK, KK + J - 2
                        X( IX ) = X( IX ) + TEMP*AP( K )
                        IX      = IX      + INCX
   30                CONTINUE
                     IF( NOUNIT )
     $                  X( JX ) = X( JX )*AP( KK + J - 1 )
                  END IF
                  JX = JX + INCX
                  KK = KK + J
   40          CONTINUE
            END IF
         ELSE
            KK = ( N*( N + 1 ) )/2
            IF( INCX.EQ.1 )THEN
               DO 60, J = N, 1, -1
                  IF( X( J ).NE.ZERO )THEN
                     TEMP = X( J )
                     K    = KK
                     DO 50, I = N, J + 1, -1
                        X( I ) = X( I ) + TEMP*AP( K )
                        K      = K      - 1
   50                CONTINUE
                     IF( NOUNIT )
     $                  X( J ) = X( J )*AP( KK - N + J )
                  END IF
                  KK = KK - ( N - J + 1 )
   60          CONTINUE
            ELSE
               KX = KX + ( N - 1 )*INCX
               JX = KX
               DO 80, J = N, 1, -1
                  IF( X( JX ).NE.ZERO )THEN
                     TEMP = X( JX )
                     IX   = KX
                     DO 70, K = KK, KK - ( N - ( J + 1 ) ), -1
                        X( IX ) = X( IX ) + TEMP*AP( K )
                        IX      = IX      - INCX
   70                CONTINUE
                     IF( NOUNIT )
     $                  X( JX ) = X( JX )*AP( KK - N + J )
                  END IF
                  JX = JX - INCX
                  KK = KK - ( N - J + 1 )
   80          CONTINUE
            END IF
         END IF
      ELSE
*
*        Form  x := A'*x.
*
         IF( LSAME( UPLO, 'U' ) )THEN
            KK = ( N*( N + 1 ) )/2
            IF( INCX.EQ.1 )THEN
               DO 100, J = N, 1, -1
                  TEMP = X( J )
                  IF( NOUNIT )
     $               TEMP = TEMP*AP( KK )
                  K = KK - 1
                  DO 90, I = J - 1, 1, -1
                     TEMP = TEMP + AP( K )*X( I )
                     K    = K    - 1
   90             CONTINUE
                  X( J ) = TEMP
                  KK     = KK   - J
  100          CONTINUE
            ELSE
               JX = KX + ( N - 1 )*INCX
               DO 120, J = N, 1, -1
                  TEMP = X( JX )
                  IX   = JX
                  IF( NOUNIT )
     $               TEMP = TEMP*AP( KK )
                  DO 110, K = KK - 1, KK - J + 1, -1
                     IX   = IX   - INCX
                     TEMP = TEMP + AP( K )*X( IX )
  110             CONTINUE
                  X( JX ) = TEMP
                  JX      = JX   - INCX
                  KK      = KK   - J
  120          CONTINUE
            END IF
         ELSE
            KK = 1
            IF( INCX.EQ.1 )THEN
               DO 140, J = 1, N
                  TEMP = X( J )
                  IF( NOUNIT )
     $               TEMP = TEMP*AP( KK )
                  K = KK + 1
                  DO 130, I = J + 1, N
                     TEMP = TEMP + AP( K )*X( I )
                     K    = K    + 1
  130             CONTINUE
                  X( J ) = TEMP
                  KK     = KK   + ( N - J + 1 )
  140          CONTINUE
            ELSE
               JX = KX
               DO 160, J = 1, N
                  TEMP = X( JX )
                  IX   = JX
                  IF( NOUNIT )
     $               TEMP = TEMP*AP( KK )
                  DO 150, K = KK + 1, KK + N - J
                     IX   = IX   + INCX
                     TEMP = TEMP + AP( K )*X( IX )
  150             CONTINUE
                  X( JX ) = TEMP
                  JX      = JX   + INCX
                  KK      = KK   + ( N - J + 1 )
  160          CONTINUE
            END IF
         END IF
      END IF
*
      RETURN
*
*     End of DTPMV .
*
      END