summaryrefslogtreecommitdiff
path: root/2.3-1/src/c/signalProcessing/fft/dfftbi.c
blob: 8ddef44f101ee96c31dfb2f4c20a3af2e197c799 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
/*
 *  Scilab ( http://www.scilab.org/ ) - This file is part of Scilab
 *  Copyright (C) 2008-2008 - INRIA - Allan SIMON
 *
 *  This file must be used under the terms of the CeCILL.
 *  This source file is licensed as described in the file COPYING, which
 *  you should have received as part of this distribution.  The terms
 *  are also available at
 *  http://www.cecill.info/licences/Licence_CeCILL_V2-en.txt
 *
 */

#include <stdlib.h>
#include <stdio.h>
#include "max.h"
#include "fft_internal.h"

/*
c arrays a and b originally hold the real and imaginary
c      components of the data, and return the real and
c      imaginary components of the resulting fourier coefficients.
c multivariate data is indexed according to the fortran
c      array element successor function, without limit
c      on the number of implied multiple subscripts.
c      the subroutine is called once for each variate.
c      the calls for a multivariate transform may be in any order.
c
c n is the dimension of the current variable.
c nspn is the spacing of consecutive data values
c      while indexing the current variable.
c nseg*n*nspn is the total number of complex data values.
c the sign of isn determines the sign of the complex
c      exponential, and the magnitude of isn is normally one.
c      the magnitude of isn determines the indexing increment for a&b.
c
c if fft is called twice, with opposite signs on isn, an
c      identity transformation is done...calls can be in either order.
c      the results are scaled by 1/n when the sign of isn is positive.
c
c a tri-variate transform with a(n1,n2,n3), b(n1,n2,n3)
c is computed by
c        call fft(a,b,n2*n3,n1,1,-1)
c        call fft(a,b,n3,n2,n1,-1)
c        call fft(a,b,1,n3,n1*n2,-1)
c
c a single-variate transform of n complex data values is computed by
c        call fft(a,b,1,n,1,-1)
c
c the data may alternatively be stored in a single complex
c      array a, then the magnitude of isn changed to two to
c      give the correct indexing increment and a(2) used to
c      pass the initial address for the sequence of imaginary
c      values, e.g.
c
c
c array nfac is working storage for factoring n.  the smallest
c      number exceeding the 15 locations provided is 12,754,584.
c!
*/
void dfftbi ( double* a , double* b , int nseg , int n    , int nspn  ,
              int isn   , int ierr)
{

    double* rstak ;
    int*  istak ;

   int lout = 0 ;
   int lnow = 10;
   int lused= 10;

   int lbook = 10 ;


   int nfac[15] ;
   int i ;
   int in ;
   int j = 3 ;
   int j2 = 3 ;
   int j3 = 3 ;
   int jj = 9;
   int m = 0 ;
   int k ;
   int kt ;
   int kkk ;
   int nspan ;
   int nitems ;
   int ntot ;
   int maxp  = 0;
   int maxf ;
   int itype;
   int istkgt ;


   int nf = abs ( n ) ;

   ierr = 0 ;

   /*determine the factors of n */


   if ( nf == 1)
      return ;

   k = nf ;

   nspan = abs ( nf*nspn ) ;
   ntot  = abs ( nspan*nseg) ;


   if ( isn*ntot == 0 )
      {
      ierr = 1 ;
      return  ;
      }


/* we search as much 4 in the factor of vector's length as we can */

   while ( (k- (int)(k/16)*16 ) == 0 )
      {
         m++;
         nfac[m-1] = 4 ;
         k = k >> 4 ;
      }


/* we search all square factor */

   do
      {
      while ( k%jj == 0 )
         {
            m++;
            nfac[m-1] = j ;
            k /= jj ;

         }

         j+=2;
         jj= j*j ;

      }while ( jj <= k);




/* if the remaining size after all the previous division is less than 4
   then it's the last factor  */
  if ( k <= 4)
     {

      kt = m;
      nfac[m] = k;
      if ( k != 1 )
         m++;
      }
   else
     {
       if ( (k & 3) == 0 )
         {
            m++;
            nfac[m-1] = 2 ;
            k = k >> 2 ;
          }

       /*all square factor out now but k >= 5 still */
       kt = m ;
       maxp = max ( (kt+1)*2 , k-1);
       j=2;

      do
        {
         if ( k%j == 0 )
            {

               m++;
               nfac[m-1] = j ;
               k /= j ;
            }

          j = (j+1) | 1 ;

         }while ( j <= k );

      }



   if ( m <= ( kt+1) )
      maxp = m + kt + 1  ;



   if ( m + kt > 15)
    {
      ierr = 2 ;

      return ;
    }


   if ( kt != 0 )
      {
         j = kt ;

         do{
            m++;

            nfac[m-1] = nfac[j-1];
            j--;
           }while ( j != 0) ;
      }


    maxf = nfac[m-kt-1] ;

   if ( kt > 0 )
      maxf = max ( nfac[kt-1] , maxf );




   for ( kkk = 1 ; kkk <= m ; kkk++ )
      {
      maxf = max ( maxf , nfac[kkk-1]);

      }







 nitems = maxf * 4 ;
 itype = 4 ;


 istkgt = 2 + ((lnow-1)/2) ;/*lnow = 10*/
 istkgt = 6;

 /*i = ( (istkgt - 1 + nitems) * isize[3] -1) + 3 ;*/
 i = 12 + nitems*2;

/* this part is mainly to allocate size for workspace */

   istak = (int*) malloc ( sizeof (int) * (unsigned int) i);

   istak[i-2] = itype ;
   istak[i-1] = lnow  ;
   lout ++ ;
   lnow = i ;
   lused = max ( lused , lnow );

   j = istkgt ;
   jj = j + maxf ;
   j2 = jj+ maxf ;
   j3 = j2+ maxf ;

   nitems = maxp ;
   itype  = 2 ;

  /*istkgt = ( lnow*isize[1] -1)/isize[1] + 2;*/
   istkgt =  lnow + 1 ;
   /*i = ( (istkgt - 1 + nitems) * isize[1] -1) / isize[1] + 3 ;*/
   i = lnow  + nitems + 2 ;
   istak = (int*) realloc ( istak ,sizeof (int) * (unsigned int) i);
   rstak = (double*) malloc ( sizeof (double) * (unsigned int) i);






   istak[i-2] = itype ;
   istak[i-1] = lnow  ;
   lout ++ ;
   lnow = i ;
   lused = max ( lused , lnow );

   k = istkgt ;

/*
c     la carte suivante est a supprimer si simple precision
c     next instruction commented by FD&MG (simulog residue?)
c    ********************************************
c      k=2*k-1
c    *********************************************
*/



   dfftmx( a , b , ntot , nf , nspan ,
           isn , m , kt , &rstak[j-1] , &rstak[jj-1] ,
            &rstak[j2-1] , &rstak[j3-1] , &istak[k-1] , nfac);

   k =2 ;

   in = 2 ;
/*
   if (!( lbook <= lnow &&  lnow <= lused  ))
      {
         ierr = 3 ;
         return ;
      }
*/
   while ( in > 0)
      {
         if ( lbook > istak[lnow-1] || istak[lnow-1] >=  lnow-1)
         {
            ierr = 4 ;
         }

         lout-- ;
         lnow = istak[lnow-1] ;
         in-- ;
      }
   free(istak);
   free(rstak);
   
   return ;
}