blob: a24f9558231683b0a976800e3cf4d9733569fbdd (
plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
|
/*
* Scilab ( http://www.scilab.org/ ) - This file is part of Scilab
* Copyright (C) 2008-2008 - INRIA - Bruno JOFRET
* Copyright (C) Bruno Pincon
*
* This file must be used under the terms of the CeCILL.
* This source file is licensed as described in the file COPYING, which
* you should have received as part of this distribution. The terms
* are also available at
* http://www.cecill.info/licences/Licence_CeCILL_V2-en.txt
*
*/
#include <math.h>
#include "sqrt.h"
#include "lapack.h"
#include "abs.h"
#include "sign.h"
#include "pythag.h"
#ifdef _MSC_VER
#include <float.h>
#define isnan(x) _isnan((double)x)
#endif
#define _sign(a, b) b >=0 ? a : -a
floatComplex csqrts(floatComplex in) {
float RMax = (float) getOverflowThreshold();
float BRMin = 2.0f * (float) getUnderflowThreshold();
float RealIn = creals(in);
float ImgIn = cimags(in);
float RealOut = 0;
float ImgOut = 0;
if(RealIn == 0)
{/* pure imaginary case */
if(dabss(ImgIn >= BRMin))
RealOut = ssqrts(0.5f * sabss(ImgIn));
else
RealOut = ssqrts(sabss(ImgIn)) * ssqrts(0.5);
ImgOut = _sign(1, ImgIn) * RealOut;
}
else if( sabss(RealIn) <= RMax && sabss(ImgIn) <= RMax)
{/* standard case : a (not zero) and b are finite */
float Temp = ssqrts(2.0f * (sabss(RealIn) + spythags(RealIn, ImgIn)));
/* overflow test */
if(Temp > RMax)
{/* handle (spurious) overflow by scaling a and b */
float RealTemp = RealIn / 16.0f;
float ImgTemp = ImgIn / 16.0f;
Temp = ssqrts(2.0f * (sabss(RealIn) + spythags(RealIn, ImgTemp)));
if(RealTemp >= 0)
{
RealOut = 2 * Temp;
ImgOut = 4 * ImgTemp / Temp;
}
else
{
RealOut = 4 * sabss(ImgIn) / Temp;
ImgOut = _sign(2, ImgIn) * Temp;
}
}
else if(RealIn >= 0) /* classic switch to get the stable formulas */
{
RealOut = 0.5f * Temp;
ImgOut = ImgIn / Temp;
}
else
{
RealOut = sabss(ImgIn) / Temp;
ImgOut = (_sign(0.5f, ImgIn)) * Temp;
}
}
else
{
/*
//Here we treat the special cases where a and b are +- 00 or NaN.
//The following is the treatment recommended by the C99 standard
//with the simplification of returning NaN + i NaN if the
//the real part or the imaginary part is NaN (C99 recommends
//something more complicated)
*/
if(isnan(RealIn) == 1 || isnan(ImgIn) == 1)
{/* got NaN + i NaN */
RealOut = RealIn + ImgIn;
ImgOut = RealOut;
}
else if( dabss(ImgIn) > RMax)
{/* case a +- i oo -> result must be +oo +- i oo for all a (finite or not) */
RealOut = sabss(ImgIn);
ImgOut = ImgIn;
}
else if(RealIn < -RMax)
{/* here a is -Inf and b is finite */
RealOut = 0;
ImgOut = _sign(1, ImgIn) * sabss(RealIn);
}
else
{/* here a is +Inf and b is finite */
RealOut = RealIn;
ImgOut = 0;
}
}
return FloatComplex(RealOut, ImgOut);
}
|