diff options
Diffstat (limited to '2.3-1/thirdparty/raspberrypi/includes/opencv2/flann/autotuned_index.h')
-rw-r--r-- | 2.3-1/thirdparty/raspberrypi/includes/opencv2/flann/autotuned_index.h | 595 |
1 files changed, 0 insertions, 595 deletions
diff --git a/2.3-1/thirdparty/raspberrypi/includes/opencv2/flann/autotuned_index.h b/2.3-1/thirdparty/raspberrypi/includes/opencv2/flann/autotuned_index.h deleted file mode 100644 index 454641e6..00000000 --- a/2.3-1/thirdparty/raspberrypi/includes/opencv2/flann/autotuned_index.h +++ /dev/null @@ -1,595 +0,0 @@ -/*********************************************************************** - * Software License Agreement (BSD License) - * - * Copyright 2008-2009 Marius Muja (mariusm@cs.ubc.ca). All rights reserved. - * Copyright 2008-2009 David G. Lowe (lowe@cs.ubc.ca). All rights reserved. - * - * THE BSD LICENSE - * - * Redistribution and use in source and binary forms, with or without - * modification, are permitted provided that the following conditions - * are met: - * - * 1. Redistributions of source code must retain the above copyright - * notice, this list of conditions and the following disclaimer. - * 2. Redistributions in binary form must reproduce the above copyright - * notice, this list of conditions and the following disclaimer in the - * documentation and/or other materials provided with the distribution. - * - * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR - * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES - * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. - * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, - * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT - * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, - * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY - * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT - * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF - * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. - *************************************************************************/ -#ifndef OPENCV_FLANN_AUTOTUNED_INDEX_H_ -#define OPENCV_FLANN_AUTOTUNED_INDEX_H_ - -#include "general.h" -#include "nn_index.h" -#include "ground_truth.h" -#include "index_testing.h" -#include "sampling.h" -#include "kdtree_index.h" -#include "kdtree_single_index.h" -#include "kmeans_index.h" -#include "composite_index.h" -#include "linear_index.h" -#include "logger.h" - -namespace cvflann -{ - -template<typename Distance> -NNIndex<Distance>* create_index_by_type(const Matrix<typename Distance::ElementType>& dataset, const IndexParams& params, const Distance& distance); - - -struct AutotunedIndexParams : public IndexParams -{ - AutotunedIndexParams(float target_precision = 0.8, float build_weight = 0.01, float memory_weight = 0, float sample_fraction = 0.1) - { - (*this)["algorithm"] = FLANN_INDEX_AUTOTUNED; - // precision desired (used for autotuning, -1 otherwise) - (*this)["target_precision"] = target_precision; - // build tree time weighting factor - (*this)["build_weight"] = build_weight; - // index memory weighting factor - (*this)["memory_weight"] = memory_weight; - // what fraction of the dataset to use for autotuning - (*this)["sample_fraction"] = sample_fraction; - } -}; - - -template <typename Distance> -class AutotunedIndex : public NNIndex<Distance> -{ -public: - typedef typename Distance::ElementType ElementType; - typedef typename Distance::ResultType DistanceType; - - AutotunedIndex(const Matrix<ElementType>& inputData, const IndexParams& params = AutotunedIndexParams(), Distance d = Distance()) : - dataset_(inputData), distance_(d) - { - target_precision_ = get_param(params, "target_precision",0.8f); - build_weight_ = get_param(params,"build_weight", 0.01f); - memory_weight_ = get_param(params, "memory_weight", 0.0f); - sample_fraction_ = get_param(params,"sample_fraction", 0.1f); - bestIndex_ = NULL; - } - - AutotunedIndex(const AutotunedIndex&); - AutotunedIndex& operator=(const AutotunedIndex&); - - virtual ~AutotunedIndex() - { - if (bestIndex_ != NULL) { - delete bestIndex_; - bestIndex_ = NULL; - } - } - - /** - * Dummy implementation for other algorithms of addable indexes after that. - */ - void addIndex(const Matrix<ElementType>& /*wholeData*/, const Matrix<ElementType>& /*additionalData*/) - { - } - - /** - * Method responsible with building the index. - */ - virtual void buildIndex() - { - std::ostringstream stream; - bestParams_ = estimateBuildParams(); - print_params(bestParams_, stream); - Logger::info("----------------------------------------------------\n"); - Logger::info("Autotuned parameters:\n"); - Logger::info("%s", stream.str().c_str()); - Logger::info("----------------------------------------------------\n"); - - bestIndex_ = create_index_by_type(dataset_, bestParams_, distance_); - bestIndex_->buildIndex(); - speedup_ = estimateSearchParams(bestSearchParams_); - stream.str(std::string()); - print_params(bestSearchParams_, stream); - Logger::info("----------------------------------------------------\n"); - Logger::info("Search parameters:\n"); - Logger::info("%s", stream.str().c_str()); - Logger::info("----------------------------------------------------\n"); - } - - /** - * Saves the index to a stream - */ - virtual void saveIndex(FILE* stream) - { - save_value(stream, (int)bestIndex_->getType()); - bestIndex_->saveIndex(stream); - save_value(stream, get_param<int>(bestSearchParams_, "checks")); - } - - /** - * Loads the index from a stream - */ - virtual void loadIndex(FILE* stream) - { - int index_type; - - load_value(stream, index_type); - IndexParams params; - params["algorithm"] = (flann_algorithm_t)index_type; - bestIndex_ = create_index_by_type<Distance>(dataset_, params, distance_); - bestIndex_->loadIndex(stream); - int checks; - load_value(stream, checks); - bestSearchParams_["checks"] = checks; - } - - /** - * Method that searches for nearest-neighbors - */ - virtual void findNeighbors(ResultSet<DistanceType>& result, const ElementType* vec, const SearchParams& searchParams) - { - int checks = get_param<int>(searchParams,"checks",FLANN_CHECKS_AUTOTUNED); - if (checks == FLANN_CHECKS_AUTOTUNED) { - bestIndex_->findNeighbors(result, vec, bestSearchParams_); - } - else { - bestIndex_->findNeighbors(result, vec, searchParams); - } - } - - - IndexParams getParameters() const - { - return bestIndex_->getParameters(); - } - - SearchParams getSearchParameters() const - { - return bestSearchParams_; - } - - float getSpeedup() const - { - return speedup_; - } - - - /** - * Number of features in this index. - */ - virtual size_t size() const - { - return bestIndex_->size(); - } - - /** - * The length of each vector in this index. - */ - virtual size_t veclen() const - { - return bestIndex_->veclen(); - } - - /** - * The amount of memory (in bytes) this index uses. - */ - virtual int usedMemory() const - { - return bestIndex_->usedMemory(); - } - - /** - * Algorithm name - */ - virtual flann_algorithm_t getType() const - { - return FLANN_INDEX_AUTOTUNED; - } - -private: - - struct CostData - { - float searchTimeCost; - float buildTimeCost; - float memoryCost; - float totalCost; - IndexParams params; - }; - - void evaluate_kmeans(CostData& cost) - { - StartStopTimer t; - int checks; - const int nn = 1; - - Logger::info("KMeansTree using params: max_iterations=%d, branching=%d\n", - get_param<int>(cost.params,"iterations"), - get_param<int>(cost.params,"branching")); - KMeansIndex<Distance> kmeans(sampledDataset_, cost.params, distance_); - // measure index build time - t.start(); - kmeans.buildIndex(); - t.stop(); - float buildTime = (float)t.value; - - // measure search time - float searchTime = test_index_precision(kmeans, sampledDataset_, testDataset_, gt_matches_, target_precision_, checks, distance_, nn); - - float datasetMemory = float(sampledDataset_.rows * sampledDataset_.cols * sizeof(float)); - cost.memoryCost = (kmeans.usedMemory() + datasetMemory) / datasetMemory; - cost.searchTimeCost = searchTime; - cost.buildTimeCost = buildTime; - Logger::info("KMeansTree buildTime=%g, searchTime=%g, build_weight=%g\n", buildTime, searchTime, build_weight_); - } - - - void evaluate_kdtree(CostData& cost) - { - StartStopTimer t; - int checks; - const int nn = 1; - - Logger::info("KDTree using params: trees=%d\n", get_param<int>(cost.params,"trees")); - KDTreeIndex<Distance> kdtree(sampledDataset_, cost.params, distance_); - - t.start(); - kdtree.buildIndex(); - t.stop(); - float buildTime = (float)t.value; - - //measure search time - float searchTime = test_index_precision(kdtree, sampledDataset_, testDataset_, gt_matches_, target_precision_, checks, distance_, nn); - - float datasetMemory = float(sampledDataset_.rows * sampledDataset_.cols * sizeof(float)); - cost.memoryCost = (kdtree.usedMemory() + datasetMemory) / datasetMemory; - cost.searchTimeCost = searchTime; - cost.buildTimeCost = buildTime; - Logger::info("KDTree buildTime=%g, searchTime=%g\n", buildTime, searchTime); - } - - - // struct KMeansSimpleDownhillFunctor { - // - // Autotune& autotuner; - // KMeansSimpleDownhillFunctor(Autotune& autotuner_) : autotuner(autotuner_) {}; - // - // float operator()(int* params) { - // - // float maxFloat = numeric_limits<float>::max(); - // - // if (params[0]<2) return maxFloat; - // if (params[1]<0) return maxFloat; - // - // CostData c; - // c.params["algorithm"] = KMEANS; - // c.params["centers-init"] = CENTERS_RANDOM; - // c.params["branching"] = params[0]; - // c.params["max-iterations"] = params[1]; - // - // autotuner.evaluate_kmeans(c); - // - // return c.timeCost; - // - // } - // }; - // - // struct KDTreeSimpleDownhillFunctor { - // - // Autotune& autotuner; - // KDTreeSimpleDownhillFunctor(Autotune& autotuner_) : autotuner(autotuner_) {}; - // - // float operator()(int* params) { - // float maxFloat = numeric_limits<float>::max(); - // - // if (params[0]<1) return maxFloat; - // - // CostData c; - // c.params["algorithm"] = KDTREE; - // c.params["trees"] = params[0]; - // - // autotuner.evaluate_kdtree(c); - // - // return c.timeCost; - // - // } - // }; - - - - void optimizeKMeans(std::vector<CostData>& costs) - { - Logger::info("KMEANS, Step 1: Exploring parameter space\n"); - - // explore kmeans parameters space using combinations of the parameters below - int maxIterations[] = { 1, 5, 10, 15 }; - int branchingFactors[] = { 16, 32, 64, 128, 256 }; - - int kmeansParamSpaceSize = FLANN_ARRAY_LEN(maxIterations) * FLANN_ARRAY_LEN(branchingFactors); - costs.reserve(costs.size() + kmeansParamSpaceSize); - - // evaluate kmeans for all parameter combinations - for (size_t i = 0; i < FLANN_ARRAY_LEN(maxIterations); ++i) { - for (size_t j = 0; j < FLANN_ARRAY_LEN(branchingFactors); ++j) { - CostData cost; - cost.params["algorithm"] = FLANN_INDEX_KMEANS; - cost.params["centers_init"] = FLANN_CENTERS_RANDOM; - cost.params["iterations"] = maxIterations[i]; - cost.params["branching"] = branchingFactors[j]; - - evaluate_kmeans(cost); - costs.push_back(cost); - } - } - - // Logger::info("KMEANS, Step 2: simplex-downhill optimization\n"); - // - // const int n = 2; - // // choose initial simplex points as the best parameters so far - // int kmeansNMPoints[n*(n+1)]; - // float kmeansVals[n+1]; - // for (int i=0;i<n+1;++i) { - // kmeansNMPoints[i*n] = (int)kmeansCosts[i].params["branching"]; - // kmeansNMPoints[i*n+1] = (int)kmeansCosts[i].params["max-iterations"]; - // kmeansVals[i] = kmeansCosts[i].timeCost; - // } - // KMeansSimpleDownhillFunctor kmeans_cost_func(*this); - // // run optimization - // optimizeSimplexDownhill(kmeansNMPoints,n,kmeans_cost_func,kmeansVals); - // // store results - // for (int i=0;i<n+1;++i) { - // kmeansCosts[i].params["branching"] = kmeansNMPoints[i*2]; - // kmeansCosts[i].params["max-iterations"] = kmeansNMPoints[i*2+1]; - // kmeansCosts[i].timeCost = kmeansVals[i]; - // } - } - - - void optimizeKDTree(std::vector<CostData>& costs) - { - Logger::info("KD-TREE, Step 1: Exploring parameter space\n"); - - // explore kd-tree parameters space using the parameters below - int testTrees[] = { 1, 4, 8, 16, 32 }; - - // evaluate kdtree for all parameter combinations - for (size_t i = 0; i < FLANN_ARRAY_LEN(testTrees); ++i) { - CostData cost; - cost.params["algorithm"] = FLANN_INDEX_KDTREE; - cost.params["trees"] = testTrees[i]; - - evaluate_kdtree(cost); - costs.push_back(cost); - } - - // Logger::info("KD-TREE, Step 2: simplex-downhill optimization\n"); - // - // const int n = 1; - // // choose initial simplex points as the best parameters so far - // int kdtreeNMPoints[n*(n+1)]; - // float kdtreeVals[n+1]; - // for (int i=0;i<n+1;++i) { - // kdtreeNMPoints[i] = (int)kdtreeCosts[i].params["trees"]; - // kdtreeVals[i] = kdtreeCosts[i].timeCost; - // } - // KDTreeSimpleDownhillFunctor kdtree_cost_func(*this); - // // run optimization - // optimizeSimplexDownhill(kdtreeNMPoints,n,kdtree_cost_func,kdtreeVals); - // // store results - // for (int i=0;i<n+1;++i) { - // kdtreeCosts[i].params["trees"] = kdtreeNMPoints[i]; - // kdtreeCosts[i].timeCost = kdtreeVals[i]; - // } - } - - /** - * Chooses the best nearest-neighbor algorithm and estimates the optimal - * parameters to use when building the index (for a given precision). - * Returns a dictionary with the optimal parameters. - */ - IndexParams estimateBuildParams() - { - std::vector<CostData> costs; - - int sampleSize = int(sample_fraction_ * dataset_.rows); - int testSampleSize = std::min(sampleSize / 10, 1000); - - Logger::info("Entering autotuning, dataset size: %d, sampleSize: %d, testSampleSize: %d, target precision: %g\n", dataset_.rows, sampleSize, testSampleSize, target_precision_); - - // For a very small dataset, it makes no sense to build any fancy index, just - // use linear search - if (testSampleSize < 10) { - Logger::info("Choosing linear, dataset too small\n"); - return LinearIndexParams(); - } - - // We use a fraction of the original dataset to speedup the autotune algorithm - sampledDataset_ = random_sample(dataset_, sampleSize); - // We use a cross-validation approach, first we sample a testset from the dataset - testDataset_ = random_sample(sampledDataset_, testSampleSize, true); - - // We compute the ground truth using linear search - Logger::info("Computing ground truth... \n"); - gt_matches_ = Matrix<int>(new int[testDataset_.rows], testDataset_.rows, 1); - StartStopTimer t; - t.start(); - compute_ground_truth<Distance>(sampledDataset_, testDataset_, gt_matches_, 0, distance_); - t.stop(); - - CostData linear_cost; - linear_cost.searchTimeCost = (float)t.value; - linear_cost.buildTimeCost = 0; - linear_cost.memoryCost = 0; - linear_cost.params["algorithm"] = FLANN_INDEX_LINEAR; - - costs.push_back(linear_cost); - - // Start parameter autotune process - Logger::info("Autotuning parameters...\n"); - - optimizeKMeans(costs); - optimizeKDTree(costs); - - float bestTimeCost = costs[0].searchTimeCost; - for (size_t i = 0; i < costs.size(); ++i) { - float timeCost = costs[i].buildTimeCost * build_weight_ + costs[i].searchTimeCost; - if (timeCost < bestTimeCost) { - bestTimeCost = timeCost; - } - } - - float bestCost = costs[0].searchTimeCost / bestTimeCost; - IndexParams bestParams = costs[0].params; - if (bestTimeCost > 0) { - for (size_t i = 0; i < costs.size(); ++i) { - float crtCost = (costs[i].buildTimeCost * build_weight_ + costs[i].searchTimeCost) / bestTimeCost + - memory_weight_ * costs[i].memoryCost; - if (crtCost < bestCost) { - bestCost = crtCost; - bestParams = costs[i].params; - } - } - } - - delete[] gt_matches_.data; - delete[] testDataset_.data; - delete[] sampledDataset_.data; - - return bestParams; - } - - - - /** - * Estimates the search time parameters needed to get the desired precision. - * Precondition: the index is built - * Postcondition: the searchParams will have the optimum params set, also the speedup obtained over linear search. - */ - float estimateSearchParams(SearchParams& searchParams) - { - const int nn = 1; - const size_t SAMPLE_COUNT = 1000; - - assert(bestIndex_ != NULL); // must have a valid index - - float speedup = 0; - - int samples = (int)std::min(dataset_.rows / 10, SAMPLE_COUNT); - if (samples > 0) { - Matrix<ElementType> testDataset = random_sample(dataset_, samples); - - Logger::info("Computing ground truth\n"); - - // we need to compute the ground truth first - Matrix<int> gt_matches(new int[testDataset.rows], testDataset.rows, 1); - StartStopTimer t; - t.start(); - compute_ground_truth<Distance>(dataset_, testDataset, gt_matches, 1, distance_); - t.stop(); - float linear = (float)t.value; - - int checks; - Logger::info("Estimating number of checks\n"); - - float searchTime; - float cb_index; - if (bestIndex_->getType() == FLANN_INDEX_KMEANS) { - Logger::info("KMeans algorithm, estimating cluster border factor\n"); - KMeansIndex<Distance>* kmeans = (KMeansIndex<Distance>*)bestIndex_; - float bestSearchTime = -1; - float best_cb_index = -1; - int best_checks = -1; - for (cb_index = 0; cb_index < 1.1f; cb_index += 0.2f) { - kmeans->set_cb_index(cb_index); - searchTime = test_index_precision(*kmeans, dataset_, testDataset, gt_matches, target_precision_, checks, distance_, nn, 1); - if ((searchTime < bestSearchTime) || (bestSearchTime == -1)) { - bestSearchTime = searchTime; - best_cb_index = cb_index; - best_checks = checks; - } - } - searchTime = bestSearchTime; - cb_index = best_cb_index; - checks = best_checks; - - kmeans->set_cb_index(best_cb_index); - Logger::info("Optimum cb_index: %g\n", cb_index); - bestParams_["cb_index"] = cb_index; - } - else { - searchTime = test_index_precision(*bestIndex_, dataset_, testDataset, gt_matches, target_precision_, checks, distance_, nn, 1); - } - - Logger::info("Required number of checks: %d \n", checks); - searchParams["checks"] = checks; - - speedup = linear / searchTime; - - delete[] gt_matches.data; - delete[] testDataset.data; - } - - return speedup; - } - -private: - NNIndex<Distance>* bestIndex_; - - IndexParams bestParams_; - SearchParams bestSearchParams_; - - Matrix<ElementType> sampledDataset_; - Matrix<ElementType> testDataset_; - Matrix<int> gt_matches_; - - float speedup_; - - /** - * The dataset used by this index - */ - const Matrix<ElementType> dataset_; - - /** - * Index parameters - */ - float target_precision_; - float build_weight_; - float memory_weight_; - float sample_fraction_; - - Distance distance_; - - -}; -} - -#endif /* OPENCV_FLANN_AUTOTUNED_INDEX_H_ */ |