summaryrefslogtreecommitdiff
path: root/2.3-1/thirdparty/raspberrypi/includes/opencv2/features2d/features2d.hpp
diff options
context:
space:
mode:
Diffstat (limited to '2.3-1/thirdparty/raspberrypi/includes/opencv2/features2d/features2d.hpp')
-rw-r--r--2.3-1/thirdparty/raspberrypi/includes/opencv2/features2d/features2d.hpp1616
1 files changed, 1616 insertions, 0 deletions
diff --git a/2.3-1/thirdparty/raspberrypi/includes/opencv2/features2d/features2d.hpp b/2.3-1/thirdparty/raspberrypi/includes/opencv2/features2d/features2d.hpp
new file mode 100644
index 00000000..e4e796fb
--- /dev/null
+++ b/2.3-1/thirdparty/raspberrypi/includes/opencv2/features2d/features2d.hpp
@@ -0,0 +1,1616 @@
+/*M///////////////////////////////////////////////////////////////////////////////////////
+//
+// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
+//
+// By downloading, copying, installing or using the software you agree to this license.
+// If you do not agree to this license, do not download, install,
+// copy or use the software.
+//
+//
+// License Agreement
+// For Open Source Computer Vision Library
+//
+// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
+// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
+// Third party copyrights are property of their respective owners.
+//
+// Redistribution and use in source and binary forms, with or without modification,
+// are permitted provided that the following conditions are met:
+//
+// * Redistribution's of source code must retain the above copyright notice,
+// this list of conditions and the following disclaimer.
+//
+// * Redistribution's in binary form must reproduce the above copyright notice,
+// this list of conditions and the following disclaimer in the documentation
+// and/or other materials provided with the distribution.
+//
+// * The name of the copyright holders may not be used to endorse or promote products
+// derived from this software without specific prior written permission.
+//
+// This software is provided by the copyright holders and contributors "as is" and
+// any express or implied warranties, including, but not limited to, the implied
+// warranties of merchantability and fitness for a particular purpose are disclaimed.
+// In no event shall the Intel Corporation or contributors be liable for any direct,
+// indirect, incidental, special, exemplary, or consequential damages
+// (including, but not limited to, procurement of substitute goods or services;
+// loss of use, data, or profits; or business interruption) however caused
+// and on any theory of liability, whether in contract, strict liability,
+// or tort (including negligence or otherwise) arising in any way out of
+// the use of this software, even if advised of the possibility of such damage.
+//
+//M*/
+
+#ifndef __OPENCV_FEATURES_2D_HPP__
+#define __OPENCV_FEATURES_2D_HPP__
+
+#include "opencv2/core/core.hpp"
+#include "opencv2/flann/miniflann.hpp"
+
+#ifdef __cplusplus
+#include <limits>
+
+namespace cv
+{
+
+CV_EXPORTS bool initModule_features2d();
+
+/*!
+ The Keypoint Class
+
+ The class instance stores a keypoint, i.e. a point feature found by one of many available keypoint detectors, such as
+ Harris corner detector, cv::FAST, cv::StarDetector, cv::SURF, cv::SIFT, cv::LDetector etc.
+
+ The keypoint is characterized by the 2D position, scale
+ (proportional to the diameter of the neighborhood that needs to be taken into account),
+ orientation and some other parameters. The keypoint neighborhood is then analyzed by another algorithm that builds a descriptor
+ (usually represented as a feature vector). The keypoints representing the same object in different images can then be matched using
+ cv::KDTree or another method.
+*/
+class CV_EXPORTS_W_SIMPLE KeyPoint
+{
+public:
+ //! the default constructor
+ CV_WRAP KeyPoint() : pt(0,0), size(0), angle(-1), response(0), octave(0), class_id(-1) {}
+ //! the full constructor
+ KeyPoint(Point2f _pt, float _size, float _angle=-1,
+ float _response=0, int _octave=0, int _class_id=-1)
+ : pt(_pt), size(_size), angle(_angle),
+ response(_response), octave(_octave), class_id(_class_id) {}
+ //! another form of the full constructor
+ CV_WRAP KeyPoint(float x, float y, float _size, float _angle=-1,
+ float _response=0, int _octave=0, int _class_id=-1)
+ : pt(x, y), size(_size), angle(_angle),
+ response(_response), octave(_octave), class_id(_class_id) {}
+
+ size_t hash() const;
+
+ //! converts vector of keypoints to vector of points
+ static void convert(const vector<KeyPoint>& keypoints,
+ CV_OUT vector<Point2f>& points2f,
+ const vector<int>& keypointIndexes=vector<int>());
+ //! converts vector of points to the vector of keypoints, where each keypoint is assigned the same size and the same orientation
+ static void convert(const vector<Point2f>& points2f,
+ CV_OUT vector<KeyPoint>& keypoints,
+ float size=1, float response=1, int octave=0, int class_id=-1);
+
+ //! computes overlap for pair of keypoints;
+ //! overlap is a ratio between area of keypoint regions intersection and
+ //! area of keypoint regions union (now keypoint region is circle)
+ static float overlap(const KeyPoint& kp1, const KeyPoint& kp2);
+
+ CV_PROP_RW Point2f pt; //!< coordinates of the keypoints
+ CV_PROP_RW float size; //!< diameter of the meaningful keypoint neighborhood
+ CV_PROP_RW float angle; //!< computed orientation of the keypoint (-1 if not applicable);
+ //!< it's in [0,360) degrees and measured relative to
+ //!< image coordinate system, ie in clockwise.
+ CV_PROP_RW float response; //!< the response by which the most strong keypoints have been selected. Can be used for the further sorting or subsampling
+ CV_PROP_RW int octave; //!< octave (pyramid layer) from which the keypoint has been extracted
+ CV_PROP_RW int class_id; //!< object class (if the keypoints need to be clustered by an object they belong to)
+};
+
+//! writes vector of keypoints to the file storage
+CV_EXPORTS void write(FileStorage& fs, const string& name, const vector<KeyPoint>& keypoints);
+//! reads vector of keypoints from the specified file storage node
+CV_EXPORTS void read(const FileNode& node, CV_OUT vector<KeyPoint>& keypoints);
+
+/*
+ * A class filters a vector of keypoints.
+ * Because now it is difficult to provide a convenient interface for all usage scenarios of the keypoints filter class,
+ * it has only several needed by now static methods.
+ */
+class CV_EXPORTS KeyPointsFilter
+{
+public:
+ KeyPointsFilter(){}
+
+ /*
+ * Remove keypoints within borderPixels of an image edge.
+ */
+ static void runByImageBorder( vector<KeyPoint>& keypoints, Size imageSize, int borderSize );
+ /*
+ * Remove keypoints of sizes out of range.
+ */
+ static void runByKeypointSize( vector<KeyPoint>& keypoints, float minSize,
+ float maxSize=FLT_MAX );
+ /*
+ * Remove keypoints from some image by mask for pixels of this image.
+ */
+ static void runByPixelsMask( vector<KeyPoint>& keypoints, const Mat& mask );
+ /*
+ * Remove duplicated keypoints.
+ */
+ static void removeDuplicated( vector<KeyPoint>& keypoints );
+
+ /*
+ * Retain the specified number of the best keypoints (according to the response)
+ */
+ static void retainBest( vector<KeyPoint>& keypoints, int npoints );
+};
+
+
+/************************************ Base Classes ************************************/
+
+/*
+ * Abstract base class for 2D image feature detectors.
+ */
+class CV_EXPORTS_W FeatureDetector : public virtual Algorithm
+{
+public:
+ virtual ~FeatureDetector();
+
+ /*
+ * Detect keypoints in an image.
+ * image The image.
+ * keypoints The detected keypoints.
+ * mask Mask specifying where to look for keypoints (optional). Must be a char
+ * matrix with non-zero values in the region of interest.
+ */
+ CV_WRAP void detect( const Mat& image, CV_OUT vector<KeyPoint>& keypoints, const Mat& mask=Mat() ) const;
+
+ /*
+ * Detect keypoints in an image set.
+ * images Image collection.
+ * keypoints Collection of keypoints detected in an input images. keypoints[i] is a set of keypoints detected in an images[i].
+ * masks Masks for image set. masks[i] is a mask for images[i].
+ */
+ void detect( const vector<Mat>& images, vector<vector<KeyPoint> >& keypoints, const vector<Mat>& masks=vector<Mat>() ) const;
+
+ // Return true if detector object is empty
+ CV_WRAP virtual bool empty() const;
+
+ // Create feature detector by detector name.
+ CV_WRAP static Ptr<FeatureDetector> create( const string& detectorType );
+
+protected:
+ virtual void detectImpl( const Mat& image, vector<KeyPoint>& keypoints, const Mat& mask=Mat() ) const = 0;
+
+ /*
+ * Remove keypoints that are not in the mask.
+ * Helper function, useful when wrapping a library call for keypoint detection that
+ * does not support a mask argument.
+ */
+ static void removeInvalidPoints( const Mat& mask, vector<KeyPoint>& keypoints );
+};
+
+
+/*
+ * Abstract base class for computing descriptors for image keypoints.
+ *
+ * In this interface we assume a keypoint descriptor can be represented as a
+ * dense, fixed-dimensional vector of some basic type. Most descriptors used
+ * in practice follow this pattern, as it makes it very easy to compute
+ * distances between descriptors. Therefore we represent a collection of
+ * descriptors as a Mat, where each row is one keypoint descriptor.
+ */
+class CV_EXPORTS_W DescriptorExtractor : public virtual Algorithm
+{
+public:
+ virtual ~DescriptorExtractor();
+
+ /*
+ * Compute the descriptors for a set of keypoints in an image.
+ * image The image.
+ * keypoints The input keypoints. Keypoints for which a descriptor cannot be computed are removed.
+ * descriptors Copmputed descriptors. Row i is the descriptor for keypoint i.
+ */
+ CV_WRAP void compute( const Mat& image, CV_OUT CV_IN_OUT vector<KeyPoint>& keypoints, CV_OUT Mat& descriptors ) const;
+
+ /*
+ * Compute the descriptors for a keypoints collection detected in image collection.
+ * images Image collection.
+ * keypoints Input keypoints collection. keypoints[i] is keypoints detected in images[i].
+ * Keypoints for which a descriptor cannot be computed are removed.
+ * descriptors Descriptor collection. descriptors[i] are descriptors computed for set keypoints[i].
+ */
+ void compute( const vector<Mat>& images, vector<vector<KeyPoint> >& keypoints, vector<Mat>& descriptors ) const;
+
+ CV_WRAP virtual int descriptorSize() const = 0;
+ CV_WRAP virtual int descriptorType() const = 0;
+
+ CV_WRAP virtual bool empty() const;
+
+ CV_WRAP static Ptr<DescriptorExtractor> create( const string& descriptorExtractorType );
+
+protected:
+ virtual void computeImpl( const Mat& image, vector<KeyPoint>& keypoints, Mat& descriptors ) const = 0;
+
+ /*
+ * Remove keypoints within borderPixels of an image edge.
+ */
+ static void removeBorderKeypoints( vector<KeyPoint>& keypoints,
+ Size imageSize, int borderSize );
+};
+
+
+
+/*
+ * Abstract base class for simultaneous 2D feature detection descriptor extraction.
+ */
+class CV_EXPORTS_W Feature2D : public FeatureDetector, public DescriptorExtractor
+{
+public:
+ /*
+ * Detect keypoints in an image.
+ * image The image.
+ * keypoints The detected keypoints.
+ * mask Mask specifying where to look for keypoints (optional). Must be a char
+ * matrix with non-zero values in the region of interest.
+ * useProvidedKeypoints If true, the method will skip the detection phase and will compute
+ * descriptors for the provided keypoints
+ */
+ CV_WRAP_AS(detectAndCompute) virtual void operator()( InputArray image, InputArray mask,
+ CV_OUT vector<KeyPoint>& keypoints,
+ OutputArray descriptors,
+ bool useProvidedKeypoints=false ) const = 0;
+
+ CV_WRAP void compute( const Mat& image, CV_OUT CV_IN_OUT std::vector<KeyPoint>& keypoints, CV_OUT Mat& descriptors ) const;
+
+ // Create feature detector and descriptor extractor by name.
+ CV_WRAP static Ptr<Feature2D> create( const string& name );
+};
+
+/*!
+ BRISK implementation
+*/
+class CV_EXPORTS_W BRISK : public Feature2D
+{
+public:
+ CV_WRAP explicit BRISK(int thresh=30, int octaves=3, float patternScale=1.0f);
+
+ virtual ~BRISK();
+
+ // returns the descriptor size in bytes
+ int descriptorSize() const;
+ // returns the descriptor type
+ int descriptorType() const;
+
+ // Compute the BRISK features on an image
+ void operator()(InputArray image, InputArray mask, vector<KeyPoint>& keypoints) const;
+
+ // Compute the BRISK features and descriptors on an image
+ void operator()( InputArray image, InputArray mask, vector<KeyPoint>& keypoints,
+ OutputArray descriptors, bool useProvidedKeypoints=false ) const;
+
+ AlgorithmInfo* info() const;
+
+ // custom setup
+ CV_WRAP explicit BRISK(std::vector<float> &radiusList, std::vector<int> &numberList,
+ float dMax=5.85f, float dMin=8.2f, std::vector<int> indexChange=std::vector<int>());
+
+ // call this to generate the kernel:
+ // circle of radius r (pixels), with n points;
+ // short pairings with dMax, long pairings with dMin
+ CV_WRAP void generateKernel(std::vector<float> &radiusList,
+ std::vector<int> &numberList, float dMax=5.85f, float dMin=8.2f,
+ std::vector<int> indexChange=std::vector<int>());
+
+protected:
+
+ void computeImpl( const Mat& image, vector<KeyPoint>& keypoints, Mat& descriptors ) const;
+ void detectImpl( const Mat& image, vector<KeyPoint>& keypoints, const Mat& mask=Mat() ) const;
+
+ void computeKeypointsNoOrientation(InputArray image, InputArray mask, vector<KeyPoint>& keypoints) const;
+ void computeDescriptorsAndOrOrientation(InputArray image, InputArray mask, vector<KeyPoint>& keypoints,
+ OutputArray descriptors, bool doDescriptors, bool doOrientation,
+ bool useProvidedKeypoints) const;
+
+ // Feature parameters
+ CV_PROP_RW int threshold;
+ CV_PROP_RW int octaves;
+
+ // some helper structures for the Brisk pattern representation
+ struct BriskPatternPoint{
+ float x; // x coordinate relative to center
+ float y; // x coordinate relative to center
+ float sigma; // Gaussian smoothing sigma
+ };
+ struct BriskShortPair{
+ unsigned int i; // index of the first pattern point
+ unsigned int j; // index of other pattern point
+ };
+ struct BriskLongPair{
+ unsigned int i; // index of the first pattern point
+ unsigned int j; // index of other pattern point
+ int weighted_dx; // 1024.0/dx
+ int weighted_dy; // 1024.0/dy
+ };
+ inline int smoothedIntensity(const cv::Mat& image,
+ const cv::Mat& integral,const float key_x,
+ const float key_y, const unsigned int scale,
+ const unsigned int rot, const unsigned int point) const;
+ // pattern properties
+ BriskPatternPoint* patternPoints_; //[i][rotation][scale]
+ unsigned int points_; // total number of collocation points
+ float* scaleList_; // lists the scaling per scale index [scale]
+ unsigned int* sizeList_; // lists the total pattern size per scale index [scale]
+ static const unsigned int scales_; // scales discretization
+ static const float scalerange_; // span of sizes 40->4 Octaves - else, this needs to be adjusted...
+ static const unsigned int n_rot_; // discretization of the rotation look-up
+
+ // pairs
+ int strings_; // number of uchars the descriptor consists of
+ float dMax_; // short pair maximum distance
+ float dMin_; // long pair maximum distance
+ BriskShortPair* shortPairs_; // d<_dMax
+ BriskLongPair* longPairs_; // d>_dMin
+ unsigned int noShortPairs_; // number of shortParis
+ unsigned int noLongPairs_; // number of longParis
+
+ // general
+ static const float basicSize_;
+};
+
+
+/*!
+ ORB implementation.
+*/
+class CV_EXPORTS_W ORB : public Feature2D
+{
+public:
+ // the size of the signature in bytes
+ enum { kBytes = 32, HARRIS_SCORE=0, FAST_SCORE=1 };
+
+ CV_WRAP explicit ORB(int nfeatures = 500, float scaleFactor = 1.2f, int nlevels = 8, int edgeThreshold = 31,
+ int firstLevel = 0, int WTA_K=2, int scoreType=ORB::HARRIS_SCORE, int patchSize=31 );
+
+ // returns the descriptor size in bytes
+ int descriptorSize() const;
+ // returns the descriptor type
+ int descriptorType() const;
+
+ // Compute the ORB features and descriptors on an image
+ void operator()(InputArray image, InputArray mask, vector<KeyPoint>& keypoints) const;
+
+ // Compute the ORB features and descriptors on an image
+ void operator()( InputArray image, InputArray mask, vector<KeyPoint>& keypoints,
+ OutputArray descriptors, bool useProvidedKeypoints=false ) const;
+
+ AlgorithmInfo* info() const;
+
+protected:
+
+ void computeImpl( const Mat& image, vector<KeyPoint>& keypoints, Mat& descriptors ) const;
+ void detectImpl( const Mat& image, vector<KeyPoint>& keypoints, const Mat& mask=Mat() ) const;
+
+ CV_PROP_RW int nfeatures;
+ CV_PROP_RW double scaleFactor;
+ CV_PROP_RW int nlevels;
+ CV_PROP_RW int edgeThreshold;
+ CV_PROP_RW int firstLevel;
+ CV_PROP_RW int WTA_K;
+ CV_PROP_RW int scoreType;
+ CV_PROP_RW int patchSize;
+};
+
+typedef ORB OrbFeatureDetector;
+typedef ORB OrbDescriptorExtractor;
+
+/*!
+ FREAK implementation
+*/
+class CV_EXPORTS FREAK : public DescriptorExtractor
+{
+public:
+ /** Constructor
+ * @param orientationNormalized enable orientation normalization
+ * @param scaleNormalized enable scale normalization
+ * @param patternScale scaling of the description pattern
+ * @param nOctaves number of octaves covered by the detected keypoints
+ * @param selectedPairs (optional) user defined selected pairs
+ */
+ explicit FREAK( bool orientationNormalized = true,
+ bool scaleNormalized = true,
+ float patternScale = 22.0f,
+ int nOctaves = 4,
+ const vector<int>& selectedPairs = vector<int>());
+ FREAK( const FREAK& rhs );
+ FREAK& operator=( const FREAK& );
+
+ virtual ~FREAK();
+
+ /** returns the descriptor length in bytes */
+ virtual int descriptorSize() const;
+
+ /** returns the descriptor type */
+ virtual int descriptorType() const;
+
+ /** select the 512 "best description pairs"
+ * @param images grayscale images set
+ * @param keypoints set of detected keypoints
+ * @param corrThresh correlation threshold
+ * @param verbose print construction information
+ * @return list of best pair indexes
+ */
+ vector<int> selectPairs( const vector<Mat>& images, vector<vector<KeyPoint> >& keypoints,
+ const double corrThresh = 0.7, bool verbose = true );
+
+ AlgorithmInfo* info() const;
+
+ enum
+ {
+ NB_SCALES = 64, NB_PAIRS = 512, NB_ORIENPAIRS = 45
+ };
+
+protected:
+ virtual void computeImpl( const Mat& image, vector<KeyPoint>& keypoints, Mat& descriptors ) const;
+ void buildPattern();
+ uchar meanIntensity( const Mat& image, const Mat& integral, const float kp_x, const float kp_y,
+ const unsigned int scale, const unsigned int rot, const unsigned int point ) const;
+
+ bool orientationNormalized; //true if the orientation is normalized, false otherwise
+ bool scaleNormalized; //true if the scale is normalized, false otherwise
+ double patternScale; //scaling of the pattern
+ int nOctaves; //number of octaves
+ bool extAll; // true if all pairs need to be extracted for pairs selection
+
+ double patternScale0;
+ int nOctaves0;
+ vector<int> selectedPairs0;
+
+ struct PatternPoint
+ {
+ float x; // x coordinate relative to center
+ float y; // x coordinate relative to center
+ float sigma; // Gaussian smoothing sigma
+ };
+
+ struct DescriptionPair
+ {
+ uchar i; // index of the first point
+ uchar j; // index of the second point
+ };
+
+ struct OrientationPair
+ {
+ uchar i; // index of the first point
+ uchar j; // index of the second point
+ int weight_dx; // dx/(norm_sq))*4096
+ int weight_dy; // dy/(norm_sq))*4096
+ };
+
+ vector<PatternPoint> patternLookup; // look-up table for the pattern points (position+sigma of all points at all scales and orientation)
+ int patternSizes[NB_SCALES]; // size of the pattern at a specific scale (used to check if a point is within image boundaries)
+ DescriptionPair descriptionPairs[NB_PAIRS];
+ OrientationPair orientationPairs[NB_ORIENPAIRS];
+};
+
+
+/*!
+ Maximal Stable Extremal Regions class.
+
+ The class implements MSER algorithm introduced by J. Matas.
+ Unlike SIFT, SURF and many other detectors in OpenCV, this is salient region detector,
+ not the salient point detector.
+
+ It returns the regions, each of those is encoded as a contour.
+*/
+class CV_EXPORTS_W MSER : public FeatureDetector
+{
+public:
+ //! the full constructor
+ CV_WRAP explicit MSER( int _delta=5, int _min_area=60, int _max_area=14400,
+ double _max_variation=0.25, double _min_diversity=.2,
+ int _max_evolution=200, double _area_threshold=1.01,
+ double _min_margin=0.003, int _edge_blur_size=5 );
+
+ //! the operator that extracts the MSERs from the image or the specific part of it
+ CV_WRAP_AS(detect) void operator()( const Mat& image, CV_OUT vector<vector<Point> >& msers,
+ const Mat& mask=Mat() ) const;
+ AlgorithmInfo* info() const;
+
+protected:
+ void detectImpl( const Mat& image, vector<KeyPoint>& keypoints, const Mat& mask=Mat() ) const;
+
+ int delta;
+ int minArea;
+ int maxArea;
+ double maxVariation;
+ double minDiversity;
+ int maxEvolution;
+ double areaThreshold;
+ double minMargin;
+ int edgeBlurSize;
+};
+
+typedef MSER MserFeatureDetector;
+
+/*!
+ The "Star" Detector.
+
+ The class implements the keypoint detector introduced by K. Konolige.
+*/
+class CV_EXPORTS_W StarDetector : public FeatureDetector
+{
+public:
+ //! the full constructor
+ CV_WRAP StarDetector(int _maxSize=45, int _responseThreshold=30,
+ int _lineThresholdProjected=10,
+ int _lineThresholdBinarized=8,
+ int _suppressNonmaxSize=5);
+
+ //! finds the keypoints in the image
+ CV_WRAP_AS(detect) void operator()(const Mat& image,
+ CV_OUT vector<KeyPoint>& keypoints) const;
+
+ AlgorithmInfo* info() const;
+
+protected:
+ void detectImpl( const Mat& image, vector<KeyPoint>& keypoints, const Mat& mask=Mat() ) const;
+
+ int maxSize;
+ int responseThreshold;
+ int lineThresholdProjected;
+ int lineThresholdBinarized;
+ int suppressNonmaxSize;
+};
+
+//! detects corners using FAST algorithm by E. Rosten
+CV_EXPORTS void FAST( InputArray image, CV_OUT vector<KeyPoint>& keypoints,
+ int threshold, bool nonmaxSuppression=true );
+
+CV_EXPORTS void FASTX( InputArray image, CV_OUT vector<KeyPoint>& keypoints,
+ int threshold, bool nonmaxSuppression, int type );
+
+class CV_EXPORTS_W FastFeatureDetector : public FeatureDetector
+{
+public:
+
+ enum
+ { // Define it in old class to simplify migration to 2.5
+ TYPE_5_8 = 0, TYPE_7_12 = 1, TYPE_9_16 = 2
+ };
+
+ CV_WRAP FastFeatureDetector( int threshold=10, bool nonmaxSuppression=true );
+ AlgorithmInfo* info() const;
+
+protected:
+ virtual void detectImpl( const Mat& image, vector<KeyPoint>& keypoints, const Mat& mask=Mat() ) const;
+
+ int threshold;
+ bool nonmaxSuppression;
+};
+
+
+class CV_EXPORTS_W GFTTDetector : public FeatureDetector
+{
+public:
+ CV_WRAP GFTTDetector( int maxCorners=1000, double qualityLevel=0.01, double minDistance=1,
+ int blockSize=3, bool useHarrisDetector=false, double k=0.04 );
+ AlgorithmInfo* info() const;
+
+protected:
+ virtual void detectImpl( const Mat& image, vector<KeyPoint>& keypoints, const Mat& mask=Mat() ) const;
+
+ int nfeatures;
+ double qualityLevel;
+ double minDistance;
+ int blockSize;
+ bool useHarrisDetector;
+ double k;
+};
+
+typedef GFTTDetector GoodFeaturesToTrackDetector;
+typedef StarDetector StarFeatureDetector;
+
+class CV_EXPORTS_W SimpleBlobDetector : public FeatureDetector
+{
+public:
+ struct CV_EXPORTS_W_SIMPLE Params
+ {
+ CV_WRAP Params();
+ CV_PROP_RW float thresholdStep;
+ CV_PROP_RW float minThreshold;
+ CV_PROP_RW float maxThreshold;
+ CV_PROP_RW size_t minRepeatability;
+ CV_PROP_RW float minDistBetweenBlobs;
+
+ CV_PROP_RW bool filterByColor;
+ CV_PROP_RW uchar blobColor;
+
+ CV_PROP_RW bool filterByArea;
+ CV_PROP_RW float minArea, maxArea;
+
+ CV_PROP_RW bool filterByCircularity;
+ CV_PROP_RW float minCircularity, maxCircularity;
+
+ CV_PROP_RW bool filterByInertia;
+ CV_PROP_RW float minInertiaRatio, maxInertiaRatio;
+
+ CV_PROP_RW bool filterByConvexity;
+ CV_PROP_RW float minConvexity, maxConvexity;
+
+ void read( const FileNode& fn );
+ void write( FileStorage& fs ) const;
+ };
+
+ CV_WRAP SimpleBlobDetector(const SimpleBlobDetector::Params &parameters = SimpleBlobDetector::Params());
+
+ virtual void read( const FileNode& fn );
+ virtual void write( FileStorage& fs ) const;
+
+protected:
+ struct CV_EXPORTS Center
+ {
+ Point2d location;
+ double radius;
+ double confidence;
+ };
+
+ virtual void detectImpl( const Mat& image, vector<KeyPoint>& keypoints, const Mat& mask=Mat() ) const;
+ virtual void findBlobs(const Mat &image, const Mat &binaryImage, vector<Center> &centers) const;
+
+ Params params;
+ AlgorithmInfo* info() const;
+};
+
+
+class CV_EXPORTS DenseFeatureDetector : public FeatureDetector
+{
+public:
+ explicit DenseFeatureDetector( float initFeatureScale=1.f, int featureScaleLevels=1,
+ float featureScaleMul=0.1f,
+ int initXyStep=6, int initImgBound=0,
+ bool varyXyStepWithScale=true,
+ bool varyImgBoundWithScale=false );
+ AlgorithmInfo* info() const;
+
+protected:
+ virtual void detectImpl( const Mat& image, vector<KeyPoint>& keypoints, const Mat& mask=Mat() ) const;
+
+ double initFeatureScale;
+ int featureScaleLevels;
+ double featureScaleMul;
+
+ int initXyStep;
+ int initImgBound;
+
+ bool varyXyStepWithScale;
+ bool varyImgBoundWithScale;
+};
+
+/*
+ * Adapts a detector to partition the source image into a grid and detect
+ * points in each cell.
+ */
+class CV_EXPORTS_W GridAdaptedFeatureDetector : public FeatureDetector
+{
+public:
+ /*
+ * detector Detector that will be adapted.
+ * maxTotalKeypoints Maximum count of keypoints detected on the image. Only the strongest keypoints
+ * will be keeped.
+ * gridRows Grid rows count.
+ * gridCols Grid column count.
+ */
+ CV_WRAP GridAdaptedFeatureDetector( const Ptr<FeatureDetector>& detector=0,
+ int maxTotalKeypoints=1000,
+ int gridRows=4, int gridCols=4 );
+
+ // TODO implement read/write
+ virtual bool empty() const;
+
+ AlgorithmInfo* info() const;
+
+protected:
+ virtual void detectImpl( const Mat& image, vector<KeyPoint>& keypoints, const Mat& mask=Mat() ) const;
+
+ Ptr<FeatureDetector> detector;
+ int maxTotalKeypoints;
+ int gridRows;
+ int gridCols;
+};
+
+/*
+ * Adapts a detector to detect points over multiple levels of a Gaussian
+ * pyramid. Useful for detectors that are not inherently scaled.
+ */
+class CV_EXPORTS_W PyramidAdaptedFeatureDetector : public FeatureDetector
+{
+public:
+ // maxLevel - The 0-based index of the last pyramid layer
+ CV_WRAP PyramidAdaptedFeatureDetector( const Ptr<FeatureDetector>& detector, int maxLevel=2 );
+
+ // TODO implement read/write
+ virtual bool empty() const;
+
+protected:
+ virtual void detectImpl( const Mat& image, vector<KeyPoint>& keypoints, const Mat& mask=Mat() ) const;
+
+ Ptr<FeatureDetector> detector;
+ int maxLevel;
+};
+
+/** \brief A feature detector parameter adjuster, this is used by the DynamicAdaptedFeatureDetector
+ * and is a wrapper for FeatureDetector that allow them to be adjusted after a detection
+ */
+class CV_EXPORTS AdjusterAdapter: public FeatureDetector
+{
+public:
+ /** pure virtual interface
+ */
+ virtual ~AdjusterAdapter() {}
+ /** too few features were detected so, adjust the detector params accordingly
+ * \param min the minimum number of desired features
+ * \param n_detected the number previously detected
+ */
+ virtual void tooFew(int min, int n_detected) = 0;
+ /** too many features were detected so, adjust the detector params accordingly
+ * \param max the maximum number of desired features
+ * \param n_detected the number previously detected
+ */
+ virtual void tooMany(int max, int n_detected) = 0;
+ /** are params maxed out or still valid?
+ * \return false if the parameters can't be adjusted any more
+ */
+ virtual bool good() const = 0;
+
+ virtual Ptr<AdjusterAdapter> clone() const = 0;
+
+ static Ptr<AdjusterAdapter> create( const string& detectorType );
+};
+/** \brief an adaptively adjusting detector that iteratively detects until the desired number
+ * of features are detected.
+ * Beware that this is not thread safe - as the adjustment of parameters breaks the const
+ * of the detection routine...
+ * /TODO Make this const correct and thread safe
+ *
+ * sample usage:
+ //will create a detector that attempts to find 100 - 110 FAST Keypoints, and will at most run
+ //FAST feature detection 10 times until that number of keypoints are found
+ Ptr<FeatureDetector> detector(new DynamicAdaptedFeatureDetector(new FastAdjuster(20,true),100, 110, 10));
+
+ */
+class CV_EXPORTS DynamicAdaptedFeatureDetector: public FeatureDetector
+{
+public:
+
+ /** \param adjuster an AdjusterAdapter that will do the detection and parameter adjustment
+ * \param max_features the maximum desired number of features
+ * \param max_iters the maximum number of times to try to adjust the feature detector params
+ * for the FastAdjuster this can be high, but with Star or Surf this can get time consuming
+ * \param min_features the minimum desired features
+ */
+ DynamicAdaptedFeatureDetector( const Ptr<AdjusterAdapter>& adjuster, int min_features=400, int max_features=500, int max_iters=5 );
+
+ virtual bool empty() const;
+
+protected:
+ virtual void detectImpl( const Mat& image, vector<KeyPoint>& keypoints, const Mat& mask=Mat() ) const;
+
+private:
+ DynamicAdaptedFeatureDetector& operator=(const DynamicAdaptedFeatureDetector&);
+ DynamicAdaptedFeatureDetector(const DynamicAdaptedFeatureDetector&);
+
+ int escape_iters_;
+ int min_features_, max_features_;
+ const Ptr<AdjusterAdapter> adjuster_;
+};
+
+/**\brief an adjust for the FAST detector. This will basically decrement or increment the
+ * threshold by 1
+ */
+class CV_EXPORTS FastAdjuster: public AdjusterAdapter
+{
+public:
+ /**\param init_thresh the initial threshold to start with, default = 20
+ * \param nonmax whether to use non max or not for fast feature detection
+ * \param min_thresh
+ * \param max_thresh
+ */
+ FastAdjuster(int init_thresh=20, bool nonmax=true, int min_thresh=1, int max_thresh=200);
+
+ virtual void tooFew(int minv, int n_detected);
+ virtual void tooMany(int maxv, int n_detected);
+ virtual bool good() const;
+
+ virtual Ptr<AdjusterAdapter> clone() const;
+
+protected:
+ virtual void detectImpl( const Mat& image, vector<KeyPoint>& keypoints, const Mat& mask=Mat() ) const;
+
+ int thresh_;
+ bool nonmax_;
+ int init_thresh_, min_thresh_, max_thresh_;
+};
+
+
+/** An adjuster for StarFeatureDetector, this one adjusts the responseThreshold for now
+ * TODO find a faster way to converge the parameters for Star - use CvStarDetectorParams
+ */
+class CV_EXPORTS StarAdjuster: public AdjusterAdapter
+{
+public:
+ StarAdjuster(double initial_thresh=30.0, double min_thresh=2., double max_thresh=200.);
+
+ virtual void tooFew(int minv, int n_detected);
+ virtual void tooMany(int maxv, int n_detected);
+ virtual bool good() const;
+
+ virtual Ptr<AdjusterAdapter> clone() const;
+
+protected:
+ virtual void detectImpl( const Mat& image, vector<KeyPoint>& keypoints, const Mat& mask=Mat() ) const;
+
+ double thresh_, init_thresh_, min_thresh_, max_thresh_;
+};
+
+class CV_EXPORTS SurfAdjuster: public AdjusterAdapter
+{
+public:
+ SurfAdjuster( double initial_thresh=400.f, double min_thresh=2, double max_thresh=1000 );
+
+ virtual void tooFew(int minv, int n_detected);
+ virtual void tooMany(int maxv, int n_detected);
+ virtual bool good() const;
+
+ virtual Ptr<AdjusterAdapter> clone() const;
+
+protected:
+ virtual void detectImpl( const Mat& image, vector<KeyPoint>& keypoints, const Mat& mask=Mat() ) const;
+
+ double thresh_, init_thresh_, min_thresh_, max_thresh_;
+};
+
+CV_EXPORTS Mat windowedMatchingMask( const vector<KeyPoint>& keypoints1, const vector<KeyPoint>& keypoints2,
+ float maxDeltaX, float maxDeltaY );
+
+
+
+/*
+ * OpponentColorDescriptorExtractor
+ *
+ * Adapts a descriptor extractor to compute descriptors in Opponent Color Space
+ * (refer to van de Sande et al., CGIV 2008 "Color Descriptors for Object Category Recognition").
+ * Input RGB image is transformed in Opponent Color Space. Then unadapted descriptor extractor
+ * (set in constructor) computes descriptors on each of the three channel and concatenate
+ * them into a single color descriptor.
+ */
+class CV_EXPORTS OpponentColorDescriptorExtractor : public DescriptorExtractor
+{
+public:
+ OpponentColorDescriptorExtractor( const Ptr<DescriptorExtractor>& descriptorExtractor );
+
+ virtual void read( const FileNode& );
+ virtual void write( FileStorage& ) const;
+
+ virtual int descriptorSize() const;
+ virtual int descriptorType() const;
+
+ virtual bool empty() const;
+
+protected:
+ virtual void computeImpl( const Mat& image, vector<KeyPoint>& keypoints, Mat& descriptors ) const;
+
+ Ptr<DescriptorExtractor> descriptorExtractor;
+};
+
+/*
+ * BRIEF Descriptor
+ */
+class CV_EXPORTS BriefDescriptorExtractor : public DescriptorExtractor
+{
+public:
+ static const int PATCH_SIZE = 48;
+ static const int KERNEL_SIZE = 9;
+
+ // bytes is a length of descriptor in bytes. It can be equal 16, 32 or 64 bytes.
+ BriefDescriptorExtractor( int bytes = 32 );
+
+ virtual void read( const FileNode& );
+ virtual void write( FileStorage& ) const;
+
+ virtual int descriptorSize() const;
+ virtual int descriptorType() const;
+
+ /// @todo read and write for brief
+
+ AlgorithmInfo* info() const;
+
+protected:
+ virtual void computeImpl(const Mat& image, vector<KeyPoint>& keypoints, Mat& descriptors) const;
+
+ typedef void(*PixelTestFn)(const Mat&, const vector<KeyPoint>&, Mat&);
+
+ int bytes_;
+ PixelTestFn test_fn_;
+};
+
+
+/****************************************************************************************\
+* Distance *
+\****************************************************************************************/
+
+template<typename T>
+struct CV_EXPORTS Accumulator
+{
+ typedef T Type;
+};
+
+template<> struct Accumulator<unsigned char> { typedef float Type; };
+template<> struct Accumulator<unsigned short> { typedef float Type; };
+template<> struct Accumulator<char> { typedef float Type; };
+template<> struct Accumulator<short> { typedef float Type; };
+
+/*
+ * Squared Euclidean distance functor
+ */
+template<class T>
+struct CV_EXPORTS SL2
+{
+ enum { normType = NORM_L2SQR };
+ typedef T ValueType;
+ typedef typename Accumulator<T>::Type ResultType;
+
+ ResultType operator()( const T* a, const T* b, int size ) const
+ {
+ return normL2Sqr<ValueType, ResultType>(a, b, size);
+ }
+};
+
+/*
+ * Euclidean distance functor
+ */
+template<class T>
+struct CV_EXPORTS L2
+{
+ enum { normType = NORM_L2 };
+ typedef T ValueType;
+ typedef typename Accumulator<T>::Type ResultType;
+
+ ResultType operator()( const T* a, const T* b, int size ) const
+ {
+ return (ResultType)sqrt((double)normL2Sqr<ValueType, ResultType>(a, b, size));
+ }
+};
+
+/*
+ * Manhattan distance (city block distance) functor
+ */
+template<class T>
+struct CV_EXPORTS L1
+{
+ enum { normType = NORM_L1 };
+ typedef T ValueType;
+ typedef typename Accumulator<T>::Type ResultType;
+
+ ResultType operator()( const T* a, const T* b, int size ) const
+ {
+ return normL1<ValueType, ResultType>(a, b, size);
+ }
+};
+
+/*
+ * Hamming distance functor - counts the bit differences between two strings - useful for the Brief descriptor
+ * bit count of A exclusive XOR'ed with B
+ */
+struct CV_EXPORTS Hamming
+{
+ enum { normType = NORM_HAMMING };
+ typedef unsigned char ValueType;
+ typedef int ResultType;
+
+ /** this will count the bits in a ^ b
+ */
+ ResultType operator()( const unsigned char* a, const unsigned char* b, int size ) const
+ {
+ return normHamming(a, b, size);
+ }
+};
+
+typedef Hamming HammingLUT;
+
+template<int cellsize> struct HammingMultilevel
+{
+ enum { normType = NORM_HAMMING + (cellsize>1) };
+ typedef unsigned char ValueType;
+ typedef int ResultType;
+
+ ResultType operator()( const unsigned char* a, const unsigned char* b, int size ) const
+ {
+ return normHamming(a, b, size, cellsize);
+ }
+};
+
+/****************************************************************************************\
+* DMatch *
+\****************************************************************************************/
+/*
+ * Struct for matching: query descriptor index, train descriptor index, train image index and distance between descriptors.
+ */
+struct CV_EXPORTS_W_SIMPLE DMatch
+{
+ CV_WRAP DMatch() : queryIdx(-1), trainIdx(-1), imgIdx(-1), distance(FLT_MAX) {}
+ CV_WRAP DMatch( int _queryIdx, int _trainIdx, float _distance ) :
+ queryIdx(_queryIdx), trainIdx(_trainIdx), imgIdx(-1), distance(_distance) {}
+ CV_WRAP DMatch( int _queryIdx, int _trainIdx, int _imgIdx, float _distance ) :
+ queryIdx(_queryIdx), trainIdx(_trainIdx), imgIdx(_imgIdx), distance(_distance) {}
+
+ CV_PROP_RW int queryIdx; // query descriptor index
+ CV_PROP_RW int trainIdx; // train descriptor index
+ CV_PROP_RW int imgIdx; // train image index
+
+ CV_PROP_RW float distance;
+
+ // less is better
+ bool operator<( const DMatch &m ) const
+ {
+ return distance < m.distance;
+ }
+};
+
+/****************************************************************************************\
+* DescriptorMatcher *
+\****************************************************************************************/
+/*
+ * Abstract base class for matching two sets of descriptors.
+ */
+class CV_EXPORTS_W DescriptorMatcher : public Algorithm
+{
+public:
+ virtual ~DescriptorMatcher();
+
+ /*
+ * Add descriptors to train descriptor collection.
+ * descriptors Descriptors to add. Each descriptors[i] is a descriptors set from one image.
+ */
+ CV_WRAP virtual void add( const vector<Mat>& descriptors );
+ /*
+ * Get train descriptors collection.
+ */
+ CV_WRAP const vector<Mat>& getTrainDescriptors() const;
+ /*
+ * Clear train descriptors collection.
+ */
+ CV_WRAP virtual void clear();
+
+ /*
+ * Return true if there are not train descriptors in collection.
+ */
+ CV_WRAP virtual bool empty() const;
+ /*
+ * Return true if the matcher supports mask in match methods.
+ */
+ CV_WRAP virtual bool isMaskSupported() const = 0;
+
+ /*
+ * Train matcher (e.g. train flann index).
+ * In all methods to match the method train() is run every time before matching.
+ * Some descriptor matchers (e.g. BruteForceMatcher) have empty implementation
+ * of this method, other matchers really train their inner structures
+ * (e.g. FlannBasedMatcher trains flann::Index). So nonempty implementation
+ * of train() should check the class object state and do traing/retraining
+ * only if the state requires that (e.g. FlannBasedMatcher trains flann::Index
+ * if it has not trained yet or if new descriptors have been added to the train
+ * collection).
+ */
+ CV_WRAP virtual void train();
+ /*
+ * Group of methods to match descriptors from image pair.
+ * Method train() is run in this methods.
+ */
+ // Find one best match for each query descriptor (if mask is empty).
+ CV_WRAP void match( const Mat& queryDescriptors, const Mat& trainDescriptors,
+ CV_OUT vector<DMatch>& matches, const Mat& mask=Mat() ) const;
+ // Find k best matches for each query descriptor (in increasing order of distances).
+ // compactResult is used when mask is not empty. If compactResult is false matches
+ // vector will have the same size as queryDescriptors rows. If compactResult is true
+ // matches vector will not contain matches for fully masked out query descriptors.
+ CV_WRAP void knnMatch( const Mat& queryDescriptors, const Mat& trainDescriptors,
+ CV_OUT vector<vector<DMatch> >& matches, int k,
+ const Mat& mask=Mat(), bool compactResult=false ) const;
+ // Find best matches for each query descriptor which have distance less than
+ // maxDistance (in increasing order of distances).
+ void radiusMatch( const Mat& queryDescriptors, const Mat& trainDescriptors,
+ vector<vector<DMatch> >& matches, float maxDistance,
+ const Mat& mask=Mat(), bool compactResult=false ) const;
+ /*
+ * Group of methods to match descriptors from one image to image set.
+ * See description of similar methods for matching image pair above.
+ */
+ CV_WRAP void match( const Mat& queryDescriptors, CV_OUT vector<DMatch>& matches,
+ const vector<Mat>& masks=vector<Mat>() );
+ CV_WRAP void knnMatch( const Mat& queryDescriptors, CV_OUT vector<vector<DMatch> >& matches, int k,
+ const vector<Mat>& masks=vector<Mat>(), bool compactResult=false );
+ void radiusMatch( const Mat& queryDescriptors, vector<vector<DMatch> >& matches, float maxDistance,
+ const vector<Mat>& masks=vector<Mat>(), bool compactResult=false );
+
+ // Reads matcher object from a file node
+ virtual void read( const FileNode& );
+ // Writes matcher object to a file storage
+ virtual void write( FileStorage& ) const;
+
+ // Clone the matcher. If emptyTrainData is false the method create deep copy of the object, i.e. copies
+ // both parameters and train data. If emptyTrainData is true the method create object copy with current parameters
+ // but with empty train data.
+ virtual Ptr<DescriptorMatcher> clone( bool emptyTrainData=false ) const = 0;
+
+ CV_WRAP static Ptr<DescriptorMatcher> create( const string& descriptorMatcherType );
+protected:
+ /*
+ * Class to work with descriptors from several images as with one merged matrix.
+ * It is used e.g. in FlannBasedMatcher.
+ */
+ class CV_EXPORTS DescriptorCollection
+ {
+ public:
+ DescriptorCollection();
+ DescriptorCollection( const DescriptorCollection& collection );
+ virtual ~DescriptorCollection();
+
+ // Vector of matrices "descriptors" will be merged to one matrix "mergedDescriptors" here.
+ void set( const vector<Mat>& descriptors );
+ virtual void clear();
+
+ const Mat& getDescriptors() const;
+ const Mat getDescriptor( int imgIdx, int localDescIdx ) const;
+ const Mat getDescriptor( int globalDescIdx ) const;
+ void getLocalIdx( int globalDescIdx, int& imgIdx, int& localDescIdx ) const;
+
+ int size() const;
+
+ protected:
+ Mat mergedDescriptors;
+ vector<int> startIdxs;
+ };
+
+ // In fact the matching is implemented only by the following two methods. These methods suppose
+ // that the class object has been trained already. Public match methods call these methods
+ // after calling train().
+ virtual void knnMatchImpl( const Mat& queryDescriptors, vector<vector<DMatch> >& matches, int k,
+ const vector<Mat>& masks=vector<Mat>(), bool compactResult=false ) = 0;
+ virtual void radiusMatchImpl( const Mat& queryDescriptors, vector<vector<DMatch> >& matches, float maxDistance,
+ const vector<Mat>& masks=vector<Mat>(), bool compactResult=false ) = 0;
+
+ static bool isPossibleMatch( const Mat& mask, int queryIdx, int trainIdx );
+ static bool isMaskedOut( const vector<Mat>& masks, int queryIdx );
+
+ static Mat clone_op( Mat m ) { return m.clone(); }
+ void checkMasks( const vector<Mat>& masks, int queryDescriptorsCount ) const;
+
+ // Collection of descriptors from train images.
+ vector<Mat> trainDescCollection;
+};
+
+/*
+ * Brute-force descriptor matcher.
+ *
+ * For each descriptor in the first set, this matcher finds the closest
+ * descriptor in the second set by trying each one.
+ *
+ * For efficiency, BruteForceMatcher is templated on the distance metric.
+ * For float descriptors, a common choice would be cv::L2<float>.
+ */
+class CV_EXPORTS_W BFMatcher : public DescriptorMatcher
+{
+public:
+ CV_WRAP BFMatcher( int normType=NORM_L2, bool crossCheck=false );
+ virtual ~BFMatcher() {}
+
+ virtual bool isMaskSupported() const { return true; }
+
+ virtual Ptr<DescriptorMatcher> clone( bool emptyTrainData=false ) const;
+
+ AlgorithmInfo* info() const;
+protected:
+ virtual void knnMatchImpl( const Mat& queryDescriptors, vector<vector<DMatch> >& matches, int k,
+ const vector<Mat>& masks=vector<Mat>(), bool compactResult=false );
+ virtual void radiusMatchImpl( const Mat& queryDescriptors, vector<vector<DMatch> >& matches, float maxDistance,
+ const vector<Mat>& masks=vector<Mat>(), bool compactResult=false );
+
+ int normType;
+ bool crossCheck;
+};
+
+
+/*
+ * Flann based matcher
+ */
+class CV_EXPORTS_W FlannBasedMatcher : public DescriptorMatcher
+{
+public:
+ CV_WRAP FlannBasedMatcher( const Ptr<flann::IndexParams>& indexParams=new flann::KDTreeIndexParams(),
+ const Ptr<flann::SearchParams>& searchParams=new flann::SearchParams() );
+
+ virtual void add( const vector<Mat>& descriptors );
+ virtual void clear();
+
+ // Reads matcher object from a file node
+ virtual void read( const FileNode& );
+ // Writes matcher object to a file storage
+ virtual void write( FileStorage& ) const;
+
+ virtual void train();
+ virtual bool isMaskSupported() const;
+
+ virtual Ptr<DescriptorMatcher> clone( bool emptyTrainData=false ) const;
+
+ AlgorithmInfo* info() const;
+protected:
+ static void convertToDMatches( const DescriptorCollection& descriptors,
+ const Mat& indices, const Mat& distances,
+ vector<vector<DMatch> >& matches );
+
+ virtual void knnMatchImpl( const Mat& queryDescriptors, vector<vector<DMatch> >& matches, int k,
+ const vector<Mat>& masks=vector<Mat>(), bool compactResult=false );
+ virtual void radiusMatchImpl( const Mat& queryDescriptors, vector<vector<DMatch> >& matches, float maxDistance,
+ const vector<Mat>& masks=vector<Mat>(), bool compactResult=false );
+
+ Ptr<flann::IndexParams> indexParams;
+ Ptr<flann::SearchParams> searchParams;
+ Ptr<flann::Index> flannIndex;
+
+ DescriptorCollection mergedDescriptors;
+ int addedDescCount;
+};
+
+/****************************************************************************************\
+* GenericDescriptorMatcher *
+\****************************************************************************************/
+/*
+ * Abstract interface for a keypoint descriptor and matcher
+ */
+class GenericDescriptorMatcher;
+typedef GenericDescriptorMatcher GenericDescriptorMatch;
+
+class CV_EXPORTS GenericDescriptorMatcher
+{
+public:
+ GenericDescriptorMatcher();
+ virtual ~GenericDescriptorMatcher();
+
+ /*
+ * Add train collection: images and keypoints from them.
+ * images A set of train images.
+ * ketpoints Keypoint collection that have been detected on train images.
+ *
+ * Keypoints for which a descriptor cannot be computed are removed. Such keypoints
+ * must be filtered in this method befor adding keypoints to train collection "trainPointCollection".
+ * If inheritor class need perform such prefiltering the method add() must be overloaded.
+ * In the other class methods programmer has access to the train keypoints by a constant link.
+ */
+ virtual void add( const vector<Mat>& images,
+ vector<vector<KeyPoint> >& keypoints );
+
+ const vector<Mat>& getTrainImages() const;
+ const vector<vector<KeyPoint> >& getTrainKeypoints() const;
+
+ /*
+ * Clear images and keypoints storing in train collection.
+ */
+ virtual void clear();
+ /*
+ * Returns true if matcher supports mask to match descriptors.
+ */
+ virtual bool isMaskSupported() = 0;
+ /*
+ * Train some inner structures (e.g. flann index or decision trees).
+ * train() methods is run every time in matching methods. So the method implementation
+ * should has a check whether these inner structures need be trained/retrained or not.
+ */
+ virtual void train();
+
+ /*
+ * Classifies query keypoints.
+ * queryImage The query image
+ * queryKeypoints Keypoints from the query image
+ * trainImage The train image
+ * trainKeypoints Keypoints from the train image
+ */
+ // Classify keypoints from query image under one train image.
+ void classify( const Mat& queryImage, vector<KeyPoint>& queryKeypoints,
+ const Mat& trainImage, vector<KeyPoint>& trainKeypoints ) const;
+ // Classify keypoints from query image under train image collection.
+ void classify( const Mat& queryImage, vector<KeyPoint>& queryKeypoints );
+
+ /*
+ * Group of methods to match keypoints from image pair.
+ * Keypoints for which a descriptor cannot be computed are removed.
+ * train() method is called here.
+ */
+ // Find one best match for each query descriptor (if mask is empty).
+ void match( const Mat& queryImage, vector<KeyPoint>& queryKeypoints,
+ const Mat& trainImage, vector<KeyPoint>& trainKeypoints,
+ vector<DMatch>& matches, const Mat& mask=Mat() ) const;
+ // Find k best matches for each query keypoint (in increasing order of distances).
+ // compactResult is used when mask is not empty. If compactResult is false matches
+ // vector will have the same size as queryDescriptors rows.
+ // If compactResult is true matches vector will not contain matches for fully masked out query descriptors.
+ void knnMatch( const Mat& queryImage, vector<KeyPoint>& queryKeypoints,
+ const Mat& trainImage, vector<KeyPoint>& trainKeypoints,
+ vector<vector<DMatch> >& matches, int k,
+ const Mat& mask=Mat(), bool compactResult=false ) const;
+ // Find best matches for each query descriptor which have distance less than maxDistance (in increasing order of distances).
+ void radiusMatch( const Mat& queryImage, vector<KeyPoint>& queryKeypoints,
+ const Mat& trainImage, vector<KeyPoint>& trainKeypoints,
+ vector<vector<DMatch> >& matches, float maxDistance,
+ const Mat& mask=Mat(), bool compactResult=false ) const;
+ /*
+ * Group of methods to match keypoints from one image to image set.
+ * See description of similar methods for matching image pair above.
+ */
+ void match( const Mat& queryImage, vector<KeyPoint>& queryKeypoints,
+ vector<DMatch>& matches, const vector<Mat>& masks=vector<Mat>() );
+ void knnMatch( const Mat& queryImage, vector<KeyPoint>& queryKeypoints,
+ vector<vector<DMatch> >& matches, int k,
+ const vector<Mat>& masks=vector<Mat>(), bool compactResult=false );
+ void radiusMatch( const Mat& queryImage, vector<KeyPoint>& queryKeypoints,
+ vector<vector<DMatch> >& matches, float maxDistance,
+ const vector<Mat>& masks=vector<Mat>(), bool compactResult=false );
+
+ // Reads matcher object from a file node
+ virtual void read( const FileNode& fn );
+ // Writes matcher object to a file storage
+ virtual void write( FileStorage& fs ) const;
+
+ // Return true if matching object is empty (e.g. feature detector or descriptor matcher are empty)
+ virtual bool empty() const;
+
+ // Clone the matcher. If emptyTrainData is false the method create deep copy of the object, i.e. copies
+ // both parameters and train data. If emptyTrainData is true the method create object copy with current parameters
+ // but with empty train data.
+ virtual Ptr<GenericDescriptorMatcher> clone( bool emptyTrainData=false ) const = 0;
+
+ static Ptr<GenericDescriptorMatcher> create( const string& genericDescritptorMatcherType,
+ const string &paramsFilename=string() );
+
+protected:
+ // In fact the matching is implemented only by the following two methods. These methods suppose
+ // that the class object has been trained already. Public match methods call these methods
+ // after calling train().
+ virtual void knnMatchImpl( const Mat& queryImage, vector<KeyPoint>& queryKeypoints,
+ vector<vector<DMatch> >& matches, int k,
+ const vector<Mat>& masks, bool compactResult ) = 0;
+ virtual void radiusMatchImpl( const Mat& queryImage, vector<KeyPoint>& queryKeypoints,
+ vector<vector<DMatch> >& matches, float maxDistance,
+ const vector<Mat>& masks, bool compactResult ) = 0;
+ /*
+ * A storage for sets of keypoints together with corresponding images and class IDs
+ */
+ class CV_EXPORTS KeyPointCollection
+ {
+ public:
+ KeyPointCollection();
+ KeyPointCollection( const KeyPointCollection& collection );
+ void add( const vector<Mat>& images, const vector<vector<KeyPoint> >& keypoints );
+ void clear();
+
+ // Returns the total number of keypoints in the collection
+ size_t keypointCount() const;
+ size_t imageCount() const;
+
+ const vector<vector<KeyPoint> >& getKeypoints() const;
+ const vector<KeyPoint>& getKeypoints( int imgIdx ) const;
+ const KeyPoint& getKeyPoint( int imgIdx, int localPointIdx ) const;
+ const KeyPoint& getKeyPoint( int globalPointIdx ) const;
+ void getLocalIdx( int globalPointIdx, int& imgIdx, int& localPointIdx ) const;
+
+ const vector<Mat>& getImages() const;
+ const Mat& getImage( int imgIdx ) const;
+
+ protected:
+ int pointCount;
+
+ vector<Mat> images;
+ vector<vector<KeyPoint> > keypoints;
+ // global indices of the first points in each image, startIndices.size() = keypoints.size()
+ vector<int> startIndices;
+
+ private:
+ static Mat clone_op( Mat m ) { return m.clone(); }
+ };
+
+ KeyPointCollection trainPointCollection;
+};
+
+
+/****************************************************************************************\
+* VectorDescriptorMatcher *
+\****************************************************************************************/
+
+/*
+ * A class used for matching descriptors that can be described as vectors in a finite-dimensional space
+ */
+class VectorDescriptorMatcher;
+typedef VectorDescriptorMatcher VectorDescriptorMatch;
+
+class CV_EXPORTS VectorDescriptorMatcher : public GenericDescriptorMatcher
+{
+public:
+ VectorDescriptorMatcher( const Ptr<DescriptorExtractor>& extractor, const Ptr<DescriptorMatcher>& matcher );
+ virtual ~VectorDescriptorMatcher();
+
+ virtual void add( const vector<Mat>& imgCollection,
+ vector<vector<KeyPoint> >& pointCollection );
+
+ virtual void clear();
+
+ virtual void train();
+
+ virtual bool isMaskSupported();
+
+ virtual void read( const FileNode& fn );
+ virtual void write( FileStorage& fs ) const;
+ virtual bool empty() const;
+
+ virtual Ptr<GenericDescriptorMatcher> clone( bool emptyTrainData=false ) const;
+
+protected:
+ virtual void knnMatchImpl( const Mat& queryImage, vector<KeyPoint>& queryKeypoints,
+ vector<vector<DMatch> >& matches, int k,
+ const vector<Mat>& masks, bool compactResult );
+ virtual void radiusMatchImpl( const Mat& queryImage, vector<KeyPoint>& queryKeypoints,
+ vector<vector<DMatch> >& matches, float maxDistance,
+ const vector<Mat>& masks, bool compactResult );
+
+ Ptr<DescriptorExtractor> extractor;
+ Ptr<DescriptorMatcher> matcher;
+};
+
+/****************************************************************************************\
+* Drawing functions *
+\****************************************************************************************/
+struct CV_EXPORTS DrawMatchesFlags
+{
+ enum{ DEFAULT = 0, // Output image matrix will be created (Mat::create),
+ // i.e. existing memory of output image may be reused.
+ // Two source image, matches and single keypoints will be drawn.
+ // For each keypoint only the center point will be drawn (without
+ // the circle around keypoint with keypoint size and orientation).
+ DRAW_OVER_OUTIMG = 1, // Output image matrix will not be created (Mat::create).
+ // Matches will be drawn on existing content of output image.
+ NOT_DRAW_SINGLE_POINTS = 2, // Single keypoints will not be drawn.
+ DRAW_RICH_KEYPOINTS = 4 // For each keypoint the circle around keypoint with keypoint size and
+ // orientation will be drawn.
+ };
+};
+
+// Draw keypoints.
+CV_EXPORTS_W void drawKeypoints( const Mat& image, const vector<KeyPoint>& keypoints, CV_OUT Mat& outImage,
+ const Scalar& color=Scalar::all(-1), int flags=DrawMatchesFlags::DEFAULT );
+
+// Draws matches of keypints from two images on output image.
+CV_EXPORTS void drawMatches( const Mat& img1, const vector<KeyPoint>& keypoints1,
+ const Mat& img2, const vector<KeyPoint>& keypoints2,
+ const vector<DMatch>& matches1to2, Mat& outImg,
+ const Scalar& matchColor=Scalar::all(-1), const Scalar& singlePointColor=Scalar::all(-1),
+ const vector<char>& matchesMask=vector<char>(), int flags=DrawMatchesFlags::DEFAULT );
+
+CV_EXPORTS void drawMatches( const Mat& img1, const vector<KeyPoint>& keypoints1,
+ const Mat& img2, const vector<KeyPoint>& keypoints2,
+ const vector<vector<DMatch> >& matches1to2, Mat& outImg,
+ const Scalar& matchColor=Scalar::all(-1), const Scalar& singlePointColor=Scalar::all(-1),
+ const vector<vector<char> >& matchesMask=vector<vector<char> >(), int flags=DrawMatchesFlags::DEFAULT );
+
+/****************************************************************************************\
+* Functions to evaluate the feature detectors and [generic] descriptor extractors *
+\****************************************************************************************/
+
+CV_EXPORTS void evaluateFeatureDetector( const Mat& img1, const Mat& img2, const Mat& H1to2,
+ vector<KeyPoint>* keypoints1, vector<KeyPoint>* keypoints2,
+ float& repeatability, int& correspCount,
+ const Ptr<FeatureDetector>& fdetector=Ptr<FeatureDetector>() );
+
+CV_EXPORTS void computeRecallPrecisionCurve( const vector<vector<DMatch> >& matches1to2,
+ const vector<vector<uchar> >& correctMatches1to2Mask,
+ vector<Point2f>& recallPrecisionCurve );
+
+CV_EXPORTS float getRecall( const vector<Point2f>& recallPrecisionCurve, float l_precision );
+CV_EXPORTS int getNearestPoint( const vector<Point2f>& recallPrecisionCurve, float l_precision );
+
+CV_EXPORTS void evaluateGenericDescriptorMatcher( const Mat& img1, const Mat& img2, const Mat& H1to2,
+ vector<KeyPoint>& keypoints1, vector<KeyPoint>& keypoints2,
+ vector<vector<DMatch> >* matches1to2, vector<vector<uchar> >* correctMatches1to2Mask,
+ vector<Point2f>& recallPrecisionCurve,
+ const Ptr<GenericDescriptorMatcher>& dmatch=Ptr<GenericDescriptorMatcher>() );
+
+
+/****************************************************************************************\
+* Bag of visual words *
+\****************************************************************************************/
+/*
+ * Abstract base class for training of a 'bag of visual words' vocabulary from a set of descriptors
+ */
+class CV_EXPORTS_W BOWTrainer
+{
+public:
+ BOWTrainer();
+ virtual ~BOWTrainer();
+
+ CV_WRAP void add( const Mat& descriptors );
+ CV_WRAP const vector<Mat>& getDescriptors() const;
+ CV_WRAP int descripotorsCount() const;
+
+ CV_WRAP virtual void clear();
+
+ /*
+ * Train visual words vocabulary, that is cluster training descriptors and
+ * compute cluster centers.
+ * Returns cluster centers.
+ *
+ * descriptors Training descriptors computed on images keypoints.
+ */
+ CV_WRAP virtual Mat cluster() const = 0;
+ CV_WRAP virtual Mat cluster( const Mat& descriptors ) const = 0;
+
+protected:
+ vector<Mat> descriptors;
+ int size;
+};
+
+/*
+ * This is BOWTrainer using cv::kmeans to get vocabulary.
+ */
+class CV_EXPORTS_W BOWKMeansTrainer : public BOWTrainer
+{
+public:
+ CV_WRAP BOWKMeansTrainer( int clusterCount, const TermCriteria& termcrit=TermCriteria(),
+ int attempts=3, int flags=KMEANS_PP_CENTERS );
+ virtual ~BOWKMeansTrainer();
+
+ // Returns trained vocabulary (i.e. cluster centers).
+ CV_WRAP virtual Mat cluster() const;
+ CV_WRAP virtual Mat cluster( const Mat& descriptors ) const;
+
+protected:
+
+ int clusterCount;
+ TermCriteria termcrit;
+ int attempts;
+ int flags;
+};
+
+/*
+ * Class to compute image descriptor using bag of visual words.
+ */
+class CV_EXPORTS_W BOWImgDescriptorExtractor
+{
+public:
+ CV_WRAP BOWImgDescriptorExtractor( const Ptr<DescriptorExtractor>& dextractor,
+ const Ptr<DescriptorMatcher>& dmatcher );
+ virtual ~BOWImgDescriptorExtractor();
+
+ CV_WRAP void setVocabulary( const Mat& vocabulary );
+ CV_WRAP const Mat& getVocabulary() const;
+ void compute( const Mat& image, vector<KeyPoint>& keypoints, Mat& imgDescriptor,
+ vector<vector<int> >* pointIdxsOfClusters=0, Mat* descriptors=0 );
+ // compute() is not constant because DescriptorMatcher::match is not constant
+
+ CV_WRAP_AS(compute) void compute2( const Mat& image, vector<KeyPoint>& keypoints, CV_OUT Mat& imgDescriptor )
+ { compute(image,keypoints,imgDescriptor); }
+
+ CV_WRAP int descriptorSize() const;
+ CV_WRAP int descriptorType() const;
+
+protected:
+ Mat vocabulary;
+ Ptr<DescriptorExtractor> dextractor;
+ Ptr<DescriptorMatcher> dmatcher;
+};
+
+} /* namespace cv */
+
+#endif /* __cplusplus */
+
+#endif
+
+/* End of file. */