diff options
Diffstat (limited to '2.3-1/thirdparty/raspberrypi/includes/opencv2/features2d/features2d.hpp')
-rw-r--r-- | 2.3-1/thirdparty/raspberrypi/includes/opencv2/features2d/features2d.hpp | 1616 |
1 files changed, 0 insertions, 1616 deletions
diff --git a/2.3-1/thirdparty/raspberrypi/includes/opencv2/features2d/features2d.hpp b/2.3-1/thirdparty/raspberrypi/includes/opencv2/features2d/features2d.hpp deleted file mode 100644 index e4e796fb..00000000 --- a/2.3-1/thirdparty/raspberrypi/includes/opencv2/features2d/features2d.hpp +++ /dev/null @@ -1,1616 +0,0 @@ -/*M/////////////////////////////////////////////////////////////////////////////////////// -// -// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. -// -// By downloading, copying, installing or using the software you agree to this license. -// If you do not agree to this license, do not download, install, -// copy or use the software. -// -// -// License Agreement -// For Open Source Computer Vision Library -// -// Copyright (C) 2000-2008, Intel Corporation, all rights reserved. -// Copyright (C) 2009, Willow Garage Inc., all rights reserved. -// Third party copyrights are property of their respective owners. -// -// Redistribution and use in source and binary forms, with or without modification, -// are permitted provided that the following conditions are met: -// -// * Redistribution's of source code must retain the above copyright notice, -// this list of conditions and the following disclaimer. -// -// * Redistribution's in binary form must reproduce the above copyright notice, -// this list of conditions and the following disclaimer in the documentation -// and/or other materials provided with the distribution. -// -// * The name of the copyright holders may not be used to endorse or promote products -// derived from this software without specific prior written permission. -// -// This software is provided by the copyright holders and contributors "as is" and -// any express or implied warranties, including, but not limited to, the implied -// warranties of merchantability and fitness for a particular purpose are disclaimed. -// In no event shall the Intel Corporation or contributors be liable for any direct, -// indirect, incidental, special, exemplary, or consequential damages -// (including, but not limited to, procurement of substitute goods or services; -// loss of use, data, or profits; or business interruption) however caused -// and on any theory of liability, whether in contract, strict liability, -// or tort (including negligence or otherwise) arising in any way out of -// the use of this software, even if advised of the possibility of such damage. -// -//M*/ - -#ifndef __OPENCV_FEATURES_2D_HPP__ -#define __OPENCV_FEATURES_2D_HPP__ - -#include "opencv2/core/core.hpp" -#include "opencv2/flann/miniflann.hpp" - -#ifdef __cplusplus -#include <limits> - -namespace cv -{ - -CV_EXPORTS bool initModule_features2d(); - -/*! - The Keypoint Class - - The class instance stores a keypoint, i.e. a point feature found by one of many available keypoint detectors, such as - Harris corner detector, cv::FAST, cv::StarDetector, cv::SURF, cv::SIFT, cv::LDetector etc. - - The keypoint is characterized by the 2D position, scale - (proportional to the diameter of the neighborhood that needs to be taken into account), - orientation and some other parameters. The keypoint neighborhood is then analyzed by another algorithm that builds a descriptor - (usually represented as a feature vector). The keypoints representing the same object in different images can then be matched using - cv::KDTree or another method. -*/ -class CV_EXPORTS_W_SIMPLE KeyPoint -{ -public: - //! the default constructor - CV_WRAP KeyPoint() : pt(0,0), size(0), angle(-1), response(0), octave(0), class_id(-1) {} - //! the full constructor - KeyPoint(Point2f _pt, float _size, float _angle=-1, - float _response=0, int _octave=0, int _class_id=-1) - : pt(_pt), size(_size), angle(_angle), - response(_response), octave(_octave), class_id(_class_id) {} - //! another form of the full constructor - CV_WRAP KeyPoint(float x, float y, float _size, float _angle=-1, - float _response=0, int _octave=0, int _class_id=-1) - : pt(x, y), size(_size), angle(_angle), - response(_response), octave(_octave), class_id(_class_id) {} - - size_t hash() const; - - //! converts vector of keypoints to vector of points - static void convert(const vector<KeyPoint>& keypoints, - CV_OUT vector<Point2f>& points2f, - const vector<int>& keypointIndexes=vector<int>()); - //! converts vector of points to the vector of keypoints, where each keypoint is assigned the same size and the same orientation - static void convert(const vector<Point2f>& points2f, - CV_OUT vector<KeyPoint>& keypoints, - float size=1, float response=1, int octave=0, int class_id=-1); - - //! computes overlap for pair of keypoints; - //! overlap is a ratio between area of keypoint regions intersection and - //! area of keypoint regions union (now keypoint region is circle) - static float overlap(const KeyPoint& kp1, const KeyPoint& kp2); - - CV_PROP_RW Point2f pt; //!< coordinates of the keypoints - CV_PROP_RW float size; //!< diameter of the meaningful keypoint neighborhood - CV_PROP_RW float angle; //!< computed orientation of the keypoint (-1 if not applicable); - //!< it's in [0,360) degrees and measured relative to - //!< image coordinate system, ie in clockwise. - CV_PROP_RW float response; //!< the response by which the most strong keypoints have been selected. Can be used for the further sorting or subsampling - CV_PROP_RW int octave; //!< octave (pyramid layer) from which the keypoint has been extracted - CV_PROP_RW int class_id; //!< object class (if the keypoints need to be clustered by an object they belong to) -}; - -//! writes vector of keypoints to the file storage -CV_EXPORTS void write(FileStorage& fs, const string& name, const vector<KeyPoint>& keypoints); -//! reads vector of keypoints from the specified file storage node -CV_EXPORTS void read(const FileNode& node, CV_OUT vector<KeyPoint>& keypoints); - -/* - * A class filters a vector of keypoints. - * Because now it is difficult to provide a convenient interface for all usage scenarios of the keypoints filter class, - * it has only several needed by now static methods. - */ -class CV_EXPORTS KeyPointsFilter -{ -public: - KeyPointsFilter(){} - - /* - * Remove keypoints within borderPixels of an image edge. - */ - static void runByImageBorder( vector<KeyPoint>& keypoints, Size imageSize, int borderSize ); - /* - * Remove keypoints of sizes out of range. - */ - static void runByKeypointSize( vector<KeyPoint>& keypoints, float minSize, - float maxSize=FLT_MAX ); - /* - * Remove keypoints from some image by mask for pixels of this image. - */ - static void runByPixelsMask( vector<KeyPoint>& keypoints, const Mat& mask ); - /* - * Remove duplicated keypoints. - */ - static void removeDuplicated( vector<KeyPoint>& keypoints ); - - /* - * Retain the specified number of the best keypoints (according to the response) - */ - static void retainBest( vector<KeyPoint>& keypoints, int npoints ); -}; - - -/************************************ Base Classes ************************************/ - -/* - * Abstract base class for 2D image feature detectors. - */ -class CV_EXPORTS_W FeatureDetector : public virtual Algorithm -{ -public: - virtual ~FeatureDetector(); - - /* - * Detect keypoints in an image. - * image The image. - * keypoints The detected keypoints. - * mask Mask specifying where to look for keypoints (optional). Must be a char - * matrix with non-zero values in the region of interest. - */ - CV_WRAP void detect( const Mat& image, CV_OUT vector<KeyPoint>& keypoints, const Mat& mask=Mat() ) const; - - /* - * Detect keypoints in an image set. - * images Image collection. - * keypoints Collection of keypoints detected in an input images. keypoints[i] is a set of keypoints detected in an images[i]. - * masks Masks for image set. masks[i] is a mask for images[i]. - */ - void detect( const vector<Mat>& images, vector<vector<KeyPoint> >& keypoints, const vector<Mat>& masks=vector<Mat>() ) const; - - // Return true if detector object is empty - CV_WRAP virtual bool empty() const; - - // Create feature detector by detector name. - CV_WRAP static Ptr<FeatureDetector> create( const string& detectorType ); - -protected: - virtual void detectImpl( const Mat& image, vector<KeyPoint>& keypoints, const Mat& mask=Mat() ) const = 0; - - /* - * Remove keypoints that are not in the mask. - * Helper function, useful when wrapping a library call for keypoint detection that - * does not support a mask argument. - */ - static void removeInvalidPoints( const Mat& mask, vector<KeyPoint>& keypoints ); -}; - - -/* - * Abstract base class for computing descriptors for image keypoints. - * - * In this interface we assume a keypoint descriptor can be represented as a - * dense, fixed-dimensional vector of some basic type. Most descriptors used - * in practice follow this pattern, as it makes it very easy to compute - * distances between descriptors. Therefore we represent a collection of - * descriptors as a Mat, where each row is one keypoint descriptor. - */ -class CV_EXPORTS_W DescriptorExtractor : public virtual Algorithm -{ -public: - virtual ~DescriptorExtractor(); - - /* - * Compute the descriptors for a set of keypoints in an image. - * image The image. - * keypoints The input keypoints. Keypoints for which a descriptor cannot be computed are removed. - * descriptors Copmputed descriptors. Row i is the descriptor for keypoint i. - */ - CV_WRAP void compute( const Mat& image, CV_OUT CV_IN_OUT vector<KeyPoint>& keypoints, CV_OUT Mat& descriptors ) const; - - /* - * Compute the descriptors for a keypoints collection detected in image collection. - * images Image collection. - * keypoints Input keypoints collection. keypoints[i] is keypoints detected in images[i]. - * Keypoints for which a descriptor cannot be computed are removed. - * descriptors Descriptor collection. descriptors[i] are descriptors computed for set keypoints[i]. - */ - void compute( const vector<Mat>& images, vector<vector<KeyPoint> >& keypoints, vector<Mat>& descriptors ) const; - - CV_WRAP virtual int descriptorSize() const = 0; - CV_WRAP virtual int descriptorType() const = 0; - - CV_WRAP virtual bool empty() const; - - CV_WRAP static Ptr<DescriptorExtractor> create( const string& descriptorExtractorType ); - -protected: - virtual void computeImpl( const Mat& image, vector<KeyPoint>& keypoints, Mat& descriptors ) const = 0; - - /* - * Remove keypoints within borderPixels of an image edge. - */ - static void removeBorderKeypoints( vector<KeyPoint>& keypoints, - Size imageSize, int borderSize ); -}; - - - -/* - * Abstract base class for simultaneous 2D feature detection descriptor extraction. - */ -class CV_EXPORTS_W Feature2D : public FeatureDetector, public DescriptorExtractor -{ -public: - /* - * Detect keypoints in an image. - * image The image. - * keypoints The detected keypoints. - * mask Mask specifying where to look for keypoints (optional). Must be a char - * matrix with non-zero values in the region of interest. - * useProvidedKeypoints If true, the method will skip the detection phase and will compute - * descriptors for the provided keypoints - */ - CV_WRAP_AS(detectAndCompute) virtual void operator()( InputArray image, InputArray mask, - CV_OUT vector<KeyPoint>& keypoints, - OutputArray descriptors, - bool useProvidedKeypoints=false ) const = 0; - - CV_WRAP void compute( const Mat& image, CV_OUT CV_IN_OUT std::vector<KeyPoint>& keypoints, CV_OUT Mat& descriptors ) const; - - // Create feature detector and descriptor extractor by name. - CV_WRAP static Ptr<Feature2D> create( const string& name ); -}; - -/*! - BRISK implementation -*/ -class CV_EXPORTS_W BRISK : public Feature2D -{ -public: - CV_WRAP explicit BRISK(int thresh=30, int octaves=3, float patternScale=1.0f); - - virtual ~BRISK(); - - // returns the descriptor size in bytes - int descriptorSize() const; - // returns the descriptor type - int descriptorType() const; - - // Compute the BRISK features on an image - void operator()(InputArray image, InputArray mask, vector<KeyPoint>& keypoints) const; - - // Compute the BRISK features and descriptors on an image - void operator()( InputArray image, InputArray mask, vector<KeyPoint>& keypoints, - OutputArray descriptors, bool useProvidedKeypoints=false ) const; - - AlgorithmInfo* info() const; - - // custom setup - CV_WRAP explicit BRISK(std::vector<float> &radiusList, std::vector<int> &numberList, - float dMax=5.85f, float dMin=8.2f, std::vector<int> indexChange=std::vector<int>()); - - // call this to generate the kernel: - // circle of radius r (pixels), with n points; - // short pairings with dMax, long pairings with dMin - CV_WRAP void generateKernel(std::vector<float> &radiusList, - std::vector<int> &numberList, float dMax=5.85f, float dMin=8.2f, - std::vector<int> indexChange=std::vector<int>()); - -protected: - - void computeImpl( const Mat& image, vector<KeyPoint>& keypoints, Mat& descriptors ) const; - void detectImpl( const Mat& image, vector<KeyPoint>& keypoints, const Mat& mask=Mat() ) const; - - void computeKeypointsNoOrientation(InputArray image, InputArray mask, vector<KeyPoint>& keypoints) const; - void computeDescriptorsAndOrOrientation(InputArray image, InputArray mask, vector<KeyPoint>& keypoints, - OutputArray descriptors, bool doDescriptors, bool doOrientation, - bool useProvidedKeypoints) const; - - // Feature parameters - CV_PROP_RW int threshold; - CV_PROP_RW int octaves; - - // some helper structures for the Brisk pattern representation - struct BriskPatternPoint{ - float x; // x coordinate relative to center - float y; // x coordinate relative to center - float sigma; // Gaussian smoothing sigma - }; - struct BriskShortPair{ - unsigned int i; // index of the first pattern point - unsigned int j; // index of other pattern point - }; - struct BriskLongPair{ - unsigned int i; // index of the first pattern point - unsigned int j; // index of other pattern point - int weighted_dx; // 1024.0/dx - int weighted_dy; // 1024.0/dy - }; - inline int smoothedIntensity(const cv::Mat& image, - const cv::Mat& integral,const float key_x, - const float key_y, const unsigned int scale, - const unsigned int rot, const unsigned int point) const; - // pattern properties - BriskPatternPoint* patternPoints_; //[i][rotation][scale] - unsigned int points_; // total number of collocation points - float* scaleList_; // lists the scaling per scale index [scale] - unsigned int* sizeList_; // lists the total pattern size per scale index [scale] - static const unsigned int scales_; // scales discretization - static const float scalerange_; // span of sizes 40->4 Octaves - else, this needs to be adjusted... - static const unsigned int n_rot_; // discretization of the rotation look-up - - // pairs - int strings_; // number of uchars the descriptor consists of - float dMax_; // short pair maximum distance - float dMin_; // long pair maximum distance - BriskShortPair* shortPairs_; // d<_dMax - BriskLongPair* longPairs_; // d>_dMin - unsigned int noShortPairs_; // number of shortParis - unsigned int noLongPairs_; // number of longParis - - // general - static const float basicSize_; -}; - - -/*! - ORB implementation. -*/ -class CV_EXPORTS_W ORB : public Feature2D -{ -public: - // the size of the signature in bytes - enum { kBytes = 32, HARRIS_SCORE=0, FAST_SCORE=1 }; - - CV_WRAP explicit ORB(int nfeatures = 500, float scaleFactor = 1.2f, int nlevels = 8, int edgeThreshold = 31, - int firstLevel = 0, int WTA_K=2, int scoreType=ORB::HARRIS_SCORE, int patchSize=31 ); - - // returns the descriptor size in bytes - int descriptorSize() const; - // returns the descriptor type - int descriptorType() const; - - // Compute the ORB features and descriptors on an image - void operator()(InputArray image, InputArray mask, vector<KeyPoint>& keypoints) const; - - // Compute the ORB features and descriptors on an image - void operator()( InputArray image, InputArray mask, vector<KeyPoint>& keypoints, - OutputArray descriptors, bool useProvidedKeypoints=false ) const; - - AlgorithmInfo* info() const; - -protected: - - void computeImpl( const Mat& image, vector<KeyPoint>& keypoints, Mat& descriptors ) const; - void detectImpl( const Mat& image, vector<KeyPoint>& keypoints, const Mat& mask=Mat() ) const; - - CV_PROP_RW int nfeatures; - CV_PROP_RW double scaleFactor; - CV_PROP_RW int nlevels; - CV_PROP_RW int edgeThreshold; - CV_PROP_RW int firstLevel; - CV_PROP_RW int WTA_K; - CV_PROP_RW int scoreType; - CV_PROP_RW int patchSize; -}; - -typedef ORB OrbFeatureDetector; -typedef ORB OrbDescriptorExtractor; - -/*! - FREAK implementation -*/ -class CV_EXPORTS FREAK : public DescriptorExtractor -{ -public: - /** Constructor - * @param orientationNormalized enable orientation normalization - * @param scaleNormalized enable scale normalization - * @param patternScale scaling of the description pattern - * @param nOctaves number of octaves covered by the detected keypoints - * @param selectedPairs (optional) user defined selected pairs - */ - explicit FREAK( bool orientationNormalized = true, - bool scaleNormalized = true, - float patternScale = 22.0f, - int nOctaves = 4, - const vector<int>& selectedPairs = vector<int>()); - FREAK( const FREAK& rhs ); - FREAK& operator=( const FREAK& ); - - virtual ~FREAK(); - - /** returns the descriptor length in bytes */ - virtual int descriptorSize() const; - - /** returns the descriptor type */ - virtual int descriptorType() const; - - /** select the 512 "best description pairs" - * @param images grayscale images set - * @param keypoints set of detected keypoints - * @param corrThresh correlation threshold - * @param verbose print construction information - * @return list of best pair indexes - */ - vector<int> selectPairs( const vector<Mat>& images, vector<vector<KeyPoint> >& keypoints, - const double corrThresh = 0.7, bool verbose = true ); - - AlgorithmInfo* info() const; - - enum - { - NB_SCALES = 64, NB_PAIRS = 512, NB_ORIENPAIRS = 45 - }; - -protected: - virtual void computeImpl( const Mat& image, vector<KeyPoint>& keypoints, Mat& descriptors ) const; - void buildPattern(); - uchar meanIntensity( const Mat& image, const Mat& integral, const float kp_x, const float kp_y, - const unsigned int scale, const unsigned int rot, const unsigned int point ) const; - - bool orientationNormalized; //true if the orientation is normalized, false otherwise - bool scaleNormalized; //true if the scale is normalized, false otherwise - double patternScale; //scaling of the pattern - int nOctaves; //number of octaves - bool extAll; // true if all pairs need to be extracted for pairs selection - - double patternScale0; - int nOctaves0; - vector<int> selectedPairs0; - - struct PatternPoint - { - float x; // x coordinate relative to center - float y; // x coordinate relative to center - float sigma; // Gaussian smoothing sigma - }; - - struct DescriptionPair - { - uchar i; // index of the first point - uchar j; // index of the second point - }; - - struct OrientationPair - { - uchar i; // index of the first point - uchar j; // index of the second point - int weight_dx; // dx/(norm_sq))*4096 - int weight_dy; // dy/(norm_sq))*4096 - }; - - vector<PatternPoint> patternLookup; // look-up table for the pattern points (position+sigma of all points at all scales and orientation) - int patternSizes[NB_SCALES]; // size of the pattern at a specific scale (used to check if a point is within image boundaries) - DescriptionPair descriptionPairs[NB_PAIRS]; - OrientationPair orientationPairs[NB_ORIENPAIRS]; -}; - - -/*! - Maximal Stable Extremal Regions class. - - The class implements MSER algorithm introduced by J. Matas. - Unlike SIFT, SURF and many other detectors in OpenCV, this is salient region detector, - not the salient point detector. - - It returns the regions, each of those is encoded as a contour. -*/ -class CV_EXPORTS_W MSER : public FeatureDetector -{ -public: - //! the full constructor - CV_WRAP explicit MSER( int _delta=5, int _min_area=60, int _max_area=14400, - double _max_variation=0.25, double _min_diversity=.2, - int _max_evolution=200, double _area_threshold=1.01, - double _min_margin=0.003, int _edge_blur_size=5 ); - - //! the operator that extracts the MSERs from the image or the specific part of it - CV_WRAP_AS(detect) void operator()( const Mat& image, CV_OUT vector<vector<Point> >& msers, - const Mat& mask=Mat() ) const; - AlgorithmInfo* info() const; - -protected: - void detectImpl( const Mat& image, vector<KeyPoint>& keypoints, const Mat& mask=Mat() ) const; - - int delta; - int minArea; - int maxArea; - double maxVariation; - double minDiversity; - int maxEvolution; - double areaThreshold; - double minMargin; - int edgeBlurSize; -}; - -typedef MSER MserFeatureDetector; - -/*! - The "Star" Detector. - - The class implements the keypoint detector introduced by K. Konolige. -*/ -class CV_EXPORTS_W StarDetector : public FeatureDetector -{ -public: - //! the full constructor - CV_WRAP StarDetector(int _maxSize=45, int _responseThreshold=30, - int _lineThresholdProjected=10, - int _lineThresholdBinarized=8, - int _suppressNonmaxSize=5); - - //! finds the keypoints in the image - CV_WRAP_AS(detect) void operator()(const Mat& image, - CV_OUT vector<KeyPoint>& keypoints) const; - - AlgorithmInfo* info() const; - -protected: - void detectImpl( const Mat& image, vector<KeyPoint>& keypoints, const Mat& mask=Mat() ) const; - - int maxSize; - int responseThreshold; - int lineThresholdProjected; - int lineThresholdBinarized; - int suppressNonmaxSize; -}; - -//! detects corners using FAST algorithm by E. Rosten -CV_EXPORTS void FAST( InputArray image, CV_OUT vector<KeyPoint>& keypoints, - int threshold, bool nonmaxSuppression=true ); - -CV_EXPORTS void FASTX( InputArray image, CV_OUT vector<KeyPoint>& keypoints, - int threshold, bool nonmaxSuppression, int type ); - -class CV_EXPORTS_W FastFeatureDetector : public FeatureDetector -{ -public: - - enum - { // Define it in old class to simplify migration to 2.5 - TYPE_5_8 = 0, TYPE_7_12 = 1, TYPE_9_16 = 2 - }; - - CV_WRAP FastFeatureDetector( int threshold=10, bool nonmaxSuppression=true ); - AlgorithmInfo* info() const; - -protected: - virtual void detectImpl( const Mat& image, vector<KeyPoint>& keypoints, const Mat& mask=Mat() ) const; - - int threshold; - bool nonmaxSuppression; -}; - - -class CV_EXPORTS_W GFTTDetector : public FeatureDetector -{ -public: - CV_WRAP GFTTDetector( int maxCorners=1000, double qualityLevel=0.01, double minDistance=1, - int blockSize=3, bool useHarrisDetector=false, double k=0.04 ); - AlgorithmInfo* info() const; - -protected: - virtual void detectImpl( const Mat& image, vector<KeyPoint>& keypoints, const Mat& mask=Mat() ) const; - - int nfeatures; - double qualityLevel; - double minDistance; - int blockSize; - bool useHarrisDetector; - double k; -}; - -typedef GFTTDetector GoodFeaturesToTrackDetector; -typedef StarDetector StarFeatureDetector; - -class CV_EXPORTS_W SimpleBlobDetector : public FeatureDetector -{ -public: - struct CV_EXPORTS_W_SIMPLE Params - { - CV_WRAP Params(); - CV_PROP_RW float thresholdStep; - CV_PROP_RW float minThreshold; - CV_PROP_RW float maxThreshold; - CV_PROP_RW size_t minRepeatability; - CV_PROP_RW float minDistBetweenBlobs; - - CV_PROP_RW bool filterByColor; - CV_PROP_RW uchar blobColor; - - CV_PROP_RW bool filterByArea; - CV_PROP_RW float minArea, maxArea; - - CV_PROP_RW bool filterByCircularity; - CV_PROP_RW float minCircularity, maxCircularity; - - CV_PROP_RW bool filterByInertia; - CV_PROP_RW float minInertiaRatio, maxInertiaRatio; - - CV_PROP_RW bool filterByConvexity; - CV_PROP_RW float minConvexity, maxConvexity; - - void read( const FileNode& fn ); - void write( FileStorage& fs ) const; - }; - - CV_WRAP SimpleBlobDetector(const SimpleBlobDetector::Params ¶meters = SimpleBlobDetector::Params()); - - virtual void read( const FileNode& fn ); - virtual void write( FileStorage& fs ) const; - -protected: - struct CV_EXPORTS Center - { - Point2d location; - double radius; - double confidence; - }; - - virtual void detectImpl( const Mat& image, vector<KeyPoint>& keypoints, const Mat& mask=Mat() ) const; - virtual void findBlobs(const Mat &image, const Mat &binaryImage, vector<Center> ¢ers) const; - - Params params; - AlgorithmInfo* info() const; -}; - - -class CV_EXPORTS DenseFeatureDetector : public FeatureDetector -{ -public: - explicit DenseFeatureDetector( float initFeatureScale=1.f, int featureScaleLevels=1, - float featureScaleMul=0.1f, - int initXyStep=6, int initImgBound=0, - bool varyXyStepWithScale=true, - bool varyImgBoundWithScale=false ); - AlgorithmInfo* info() const; - -protected: - virtual void detectImpl( const Mat& image, vector<KeyPoint>& keypoints, const Mat& mask=Mat() ) const; - - double initFeatureScale; - int featureScaleLevels; - double featureScaleMul; - - int initXyStep; - int initImgBound; - - bool varyXyStepWithScale; - bool varyImgBoundWithScale; -}; - -/* - * Adapts a detector to partition the source image into a grid and detect - * points in each cell. - */ -class CV_EXPORTS_W GridAdaptedFeatureDetector : public FeatureDetector -{ -public: - /* - * detector Detector that will be adapted. - * maxTotalKeypoints Maximum count of keypoints detected on the image. Only the strongest keypoints - * will be keeped. - * gridRows Grid rows count. - * gridCols Grid column count. - */ - CV_WRAP GridAdaptedFeatureDetector( const Ptr<FeatureDetector>& detector=0, - int maxTotalKeypoints=1000, - int gridRows=4, int gridCols=4 ); - - // TODO implement read/write - virtual bool empty() const; - - AlgorithmInfo* info() const; - -protected: - virtual void detectImpl( const Mat& image, vector<KeyPoint>& keypoints, const Mat& mask=Mat() ) const; - - Ptr<FeatureDetector> detector; - int maxTotalKeypoints; - int gridRows; - int gridCols; -}; - -/* - * Adapts a detector to detect points over multiple levels of a Gaussian - * pyramid. Useful for detectors that are not inherently scaled. - */ -class CV_EXPORTS_W PyramidAdaptedFeatureDetector : public FeatureDetector -{ -public: - // maxLevel - The 0-based index of the last pyramid layer - CV_WRAP PyramidAdaptedFeatureDetector( const Ptr<FeatureDetector>& detector, int maxLevel=2 ); - - // TODO implement read/write - virtual bool empty() const; - -protected: - virtual void detectImpl( const Mat& image, vector<KeyPoint>& keypoints, const Mat& mask=Mat() ) const; - - Ptr<FeatureDetector> detector; - int maxLevel; -}; - -/** \brief A feature detector parameter adjuster, this is used by the DynamicAdaptedFeatureDetector - * and is a wrapper for FeatureDetector that allow them to be adjusted after a detection - */ -class CV_EXPORTS AdjusterAdapter: public FeatureDetector -{ -public: - /** pure virtual interface - */ - virtual ~AdjusterAdapter() {} - /** too few features were detected so, adjust the detector params accordingly - * \param min the minimum number of desired features - * \param n_detected the number previously detected - */ - virtual void tooFew(int min, int n_detected) = 0; - /** too many features were detected so, adjust the detector params accordingly - * \param max the maximum number of desired features - * \param n_detected the number previously detected - */ - virtual void tooMany(int max, int n_detected) = 0; - /** are params maxed out or still valid? - * \return false if the parameters can't be adjusted any more - */ - virtual bool good() const = 0; - - virtual Ptr<AdjusterAdapter> clone() const = 0; - - static Ptr<AdjusterAdapter> create( const string& detectorType ); -}; -/** \brief an adaptively adjusting detector that iteratively detects until the desired number - * of features are detected. - * Beware that this is not thread safe - as the adjustment of parameters breaks the const - * of the detection routine... - * /TODO Make this const correct and thread safe - * - * sample usage: - //will create a detector that attempts to find 100 - 110 FAST Keypoints, and will at most run - //FAST feature detection 10 times until that number of keypoints are found - Ptr<FeatureDetector> detector(new DynamicAdaptedFeatureDetector(new FastAdjuster(20,true),100, 110, 10)); - - */ -class CV_EXPORTS DynamicAdaptedFeatureDetector: public FeatureDetector -{ -public: - - /** \param adjuster an AdjusterAdapter that will do the detection and parameter adjustment - * \param max_features the maximum desired number of features - * \param max_iters the maximum number of times to try to adjust the feature detector params - * for the FastAdjuster this can be high, but with Star or Surf this can get time consuming - * \param min_features the minimum desired features - */ - DynamicAdaptedFeatureDetector( const Ptr<AdjusterAdapter>& adjuster, int min_features=400, int max_features=500, int max_iters=5 ); - - virtual bool empty() const; - -protected: - virtual void detectImpl( const Mat& image, vector<KeyPoint>& keypoints, const Mat& mask=Mat() ) const; - -private: - DynamicAdaptedFeatureDetector& operator=(const DynamicAdaptedFeatureDetector&); - DynamicAdaptedFeatureDetector(const DynamicAdaptedFeatureDetector&); - - int escape_iters_; - int min_features_, max_features_; - const Ptr<AdjusterAdapter> adjuster_; -}; - -/**\brief an adjust for the FAST detector. This will basically decrement or increment the - * threshold by 1 - */ -class CV_EXPORTS FastAdjuster: public AdjusterAdapter -{ -public: - /**\param init_thresh the initial threshold to start with, default = 20 - * \param nonmax whether to use non max or not for fast feature detection - * \param min_thresh - * \param max_thresh - */ - FastAdjuster(int init_thresh=20, bool nonmax=true, int min_thresh=1, int max_thresh=200); - - virtual void tooFew(int minv, int n_detected); - virtual void tooMany(int maxv, int n_detected); - virtual bool good() const; - - virtual Ptr<AdjusterAdapter> clone() const; - -protected: - virtual void detectImpl( const Mat& image, vector<KeyPoint>& keypoints, const Mat& mask=Mat() ) const; - - int thresh_; - bool nonmax_; - int init_thresh_, min_thresh_, max_thresh_; -}; - - -/** An adjuster for StarFeatureDetector, this one adjusts the responseThreshold for now - * TODO find a faster way to converge the parameters for Star - use CvStarDetectorParams - */ -class CV_EXPORTS StarAdjuster: public AdjusterAdapter -{ -public: - StarAdjuster(double initial_thresh=30.0, double min_thresh=2., double max_thresh=200.); - - virtual void tooFew(int minv, int n_detected); - virtual void tooMany(int maxv, int n_detected); - virtual bool good() const; - - virtual Ptr<AdjusterAdapter> clone() const; - -protected: - virtual void detectImpl( const Mat& image, vector<KeyPoint>& keypoints, const Mat& mask=Mat() ) const; - - double thresh_, init_thresh_, min_thresh_, max_thresh_; -}; - -class CV_EXPORTS SurfAdjuster: public AdjusterAdapter -{ -public: - SurfAdjuster( double initial_thresh=400.f, double min_thresh=2, double max_thresh=1000 ); - - virtual void tooFew(int minv, int n_detected); - virtual void tooMany(int maxv, int n_detected); - virtual bool good() const; - - virtual Ptr<AdjusterAdapter> clone() const; - -protected: - virtual void detectImpl( const Mat& image, vector<KeyPoint>& keypoints, const Mat& mask=Mat() ) const; - - double thresh_, init_thresh_, min_thresh_, max_thresh_; -}; - -CV_EXPORTS Mat windowedMatchingMask( const vector<KeyPoint>& keypoints1, const vector<KeyPoint>& keypoints2, - float maxDeltaX, float maxDeltaY ); - - - -/* - * OpponentColorDescriptorExtractor - * - * Adapts a descriptor extractor to compute descriptors in Opponent Color Space - * (refer to van de Sande et al., CGIV 2008 "Color Descriptors for Object Category Recognition"). - * Input RGB image is transformed in Opponent Color Space. Then unadapted descriptor extractor - * (set in constructor) computes descriptors on each of the three channel and concatenate - * them into a single color descriptor. - */ -class CV_EXPORTS OpponentColorDescriptorExtractor : public DescriptorExtractor -{ -public: - OpponentColorDescriptorExtractor( const Ptr<DescriptorExtractor>& descriptorExtractor ); - - virtual void read( const FileNode& ); - virtual void write( FileStorage& ) const; - - virtual int descriptorSize() const; - virtual int descriptorType() const; - - virtual bool empty() const; - -protected: - virtual void computeImpl( const Mat& image, vector<KeyPoint>& keypoints, Mat& descriptors ) const; - - Ptr<DescriptorExtractor> descriptorExtractor; -}; - -/* - * BRIEF Descriptor - */ -class CV_EXPORTS BriefDescriptorExtractor : public DescriptorExtractor -{ -public: - static const int PATCH_SIZE = 48; - static const int KERNEL_SIZE = 9; - - // bytes is a length of descriptor in bytes. It can be equal 16, 32 or 64 bytes. - BriefDescriptorExtractor( int bytes = 32 ); - - virtual void read( const FileNode& ); - virtual void write( FileStorage& ) const; - - virtual int descriptorSize() const; - virtual int descriptorType() const; - - /// @todo read and write for brief - - AlgorithmInfo* info() const; - -protected: - virtual void computeImpl(const Mat& image, vector<KeyPoint>& keypoints, Mat& descriptors) const; - - typedef void(*PixelTestFn)(const Mat&, const vector<KeyPoint>&, Mat&); - - int bytes_; - PixelTestFn test_fn_; -}; - - -/****************************************************************************************\ -* Distance * -\****************************************************************************************/ - -template<typename T> -struct CV_EXPORTS Accumulator -{ - typedef T Type; -}; - -template<> struct Accumulator<unsigned char> { typedef float Type; }; -template<> struct Accumulator<unsigned short> { typedef float Type; }; -template<> struct Accumulator<char> { typedef float Type; }; -template<> struct Accumulator<short> { typedef float Type; }; - -/* - * Squared Euclidean distance functor - */ -template<class T> -struct CV_EXPORTS SL2 -{ - enum { normType = NORM_L2SQR }; - typedef T ValueType; - typedef typename Accumulator<T>::Type ResultType; - - ResultType operator()( const T* a, const T* b, int size ) const - { - return normL2Sqr<ValueType, ResultType>(a, b, size); - } -}; - -/* - * Euclidean distance functor - */ -template<class T> -struct CV_EXPORTS L2 -{ - enum { normType = NORM_L2 }; - typedef T ValueType; - typedef typename Accumulator<T>::Type ResultType; - - ResultType operator()( const T* a, const T* b, int size ) const - { - return (ResultType)sqrt((double)normL2Sqr<ValueType, ResultType>(a, b, size)); - } -}; - -/* - * Manhattan distance (city block distance) functor - */ -template<class T> -struct CV_EXPORTS L1 -{ - enum { normType = NORM_L1 }; - typedef T ValueType; - typedef typename Accumulator<T>::Type ResultType; - - ResultType operator()( const T* a, const T* b, int size ) const - { - return normL1<ValueType, ResultType>(a, b, size); - } -}; - -/* - * Hamming distance functor - counts the bit differences between two strings - useful for the Brief descriptor - * bit count of A exclusive XOR'ed with B - */ -struct CV_EXPORTS Hamming -{ - enum { normType = NORM_HAMMING }; - typedef unsigned char ValueType; - typedef int ResultType; - - /** this will count the bits in a ^ b - */ - ResultType operator()( const unsigned char* a, const unsigned char* b, int size ) const - { - return normHamming(a, b, size); - } -}; - -typedef Hamming HammingLUT; - -template<int cellsize> struct HammingMultilevel -{ - enum { normType = NORM_HAMMING + (cellsize>1) }; - typedef unsigned char ValueType; - typedef int ResultType; - - ResultType operator()( const unsigned char* a, const unsigned char* b, int size ) const - { - return normHamming(a, b, size, cellsize); - } -}; - -/****************************************************************************************\ -* DMatch * -\****************************************************************************************/ -/* - * Struct for matching: query descriptor index, train descriptor index, train image index and distance between descriptors. - */ -struct CV_EXPORTS_W_SIMPLE DMatch -{ - CV_WRAP DMatch() : queryIdx(-1), trainIdx(-1), imgIdx(-1), distance(FLT_MAX) {} - CV_WRAP DMatch( int _queryIdx, int _trainIdx, float _distance ) : - queryIdx(_queryIdx), trainIdx(_trainIdx), imgIdx(-1), distance(_distance) {} - CV_WRAP DMatch( int _queryIdx, int _trainIdx, int _imgIdx, float _distance ) : - queryIdx(_queryIdx), trainIdx(_trainIdx), imgIdx(_imgIdx), distance(_distance) {} - - CV_PROP_RW int queryIdx; // query descriptor index - CV_PROP_RW int trainIdx; // train descriptor index - CV_PROP_RW int imgIdx; // train image index - - CV_PROP_RW float distance; - - // less is better - bool operator<( const DMatch &m ) const - { - return distance < m.distance; - } -}; - -/****************************************************************************************\ -* DescriptorMatcher * -\****************************************************************************************/ -/* - * Abstract base class for matching two sets of descriptors. - */ -class CV_EXPORTS_W DescriptorMatcher : public Algorithm -{ -public: - virtual ~DescriptorMatcher(); - - /* - * Add descriptors to train descriptor collection. - * descriptors Descriptors to add. Each descriptors[i] is a descriptors set from one image. - */ - CV_WRAP virtual void add( const vector<Mat>& descriptors ); - /* - * Get train descriptors collection. - */ - CV_WRAP const vector<Mat>& getTrainDescriptors() const; - /* - * Clear train descriptors collection. - */ - CV_WRAP virtual void clear(); - - /* - * Return true if there are not train descriptors in collection. - */ - CV_WRAP virtual bool empty() const; - /* - * Return true if the matcher supports mask in match methods. - */ - CV_WRAP virtual bool isMaskSupported() const = 0; - - /* - * Train matcher (e.g. train flann index). - * In all methods to match the method train() is run every time before matching. - * Some descriptor matchers (e.g. BruteForceMatcher) have empty implementation - * of this method, other matchers really train their inner structures - * (e.g. FlannBasedMatcher trains flann::Index). So nonempty implementation - * of train() should check the class object state and do traing/retraining - * only if the state requires that (e.g. FlannBasedMatcher trains flann::Index - * if it has not trained yet or if new descriptors have been added to the train - * collection). - */ - CV_WRAP virtual void train(); - /* - * Group of methods to match descriptors from image pair. - * Method train() is run in this methods. - */ - // Find one best match for each query descriptor (if mask is empty). - CV_WRAP void match( const Mat& queryDescriptors, const Mat& trainDescriptors, - CV_OUT vector<DMatch>& matches, const Mat& mask=Mat() ) const; - // Find k best matches for each query descriptor (in increasing order of distances). - // compactResult is used when mask is not empty. If compactResult is false matches - // vector will have the same size as queryDescriptors rows. If compactResult is true - // matches vector will not contain matches for fully masked out query descriptors. - CV_WRAP void knnMatch( const Mat& queryDescriptors, const Mat& trainDescriptors, - CV_OUT vector<vector<DMatch> >& matches, int k, - const Mat& mask=Mat(), bool compactResult=false ) const; - // Find best matches for each query descriptor which have distance less than - // maxDistance (in increasing order of distances). - void radiusMatch( const Mat& queryDescriptors, const Mat& trainDescriptors, - vector<vector<DMatch> >& matches, float maxDistance, - const Mat& mask=Mat(), bool compactResult=false ) const; - /* - * Group of methods to match descriptors from one image to image set. - * See description of similar methods for matching image pair above. - */ - CV_WRAP void match( const Mat& queryDescriptors, CV_OUT vector<DMatch>& matches, - const vector<Mat>& masks=vector<Mat>() ); - CV_WRAP void knnMatch( const Mat& queryDescriptors, CV_OUT vector<vector<DMatch> >& matches, int k, - const vector<Mat>& masks=vector<Mat>(), bool compactResult=false ); - void radiusMatch( const Mat& queryDescriptors, vector<vector<DMatch> >& matches, float maxDistance, - const vector<Mat>& masks=vector<Mat>(), bool compactResult=false ); - - // Reads matcher object from a file node - virtual void read( const FileNode& ); - // Writes matcher object to a file storage - virtual void write( FileStorage& ) const; - - // Clone the matcher. If emptyTrainData is false the method create deep copy of the object, i.e. copies - // both parameters and train data. If emptyTrainData is true the method create object copy with current parameters - // but with empty train data. - virtual Ptr<DescriptorMatcher> clone( bool emptyTrainData=false ) const = 0; - - CV_WRAP static Ptr<DescriptorMatcher> create( const string& descriptorMatcherType ); -protected: - /* - * Class to work with descriptors from several images as with one merged matrix. - * It is used e.g. in FlannBasedMatcher. - */ - class CV_EXPORTS DescriptorCollection - { - public: - DescriptorCollection(); - DescriptorCollection( const DescriptorCollection& collection ); - virtual ~DescriptorCollection(); - - // Vector of matrices "descriptors" will be merged to one matrix "mergedDescriptors" here. - void set( const vector<Mat>& descriptors ); - virtual void clear(); - - const Mat& getDescriptors() const; - const Mat getDescriptor( int imgIdx, int localDescIdx ) const; - const Mat getDescriptor( int globalDescIdx ) const; - void getLocalIdx( int globalDescIdx, int& imgIdx, int& localDescIdx ) const; - - int size() const; - - protected: - Mat mergedDescriptors; - vector<int> startIdxs; - }; - - // In fact the matching is implemented only by the following two methods. These methods suppose - // that the class object has been trained already. Public match methods call these methods - // after calling train(). - virtual void knnMatchImpl( const Mat& queryDescriptors, vector<vector<DMatch> >& matches, int k, - const vector<Mat>& masks=vector<Mat>(), bool compactResult=false ) = 0; - virtual void radiusMatchImpl( const Mat& queryDescriptors, vector<vector<DMatch> >& matches, float maxDistance, - const vector<Mat>& masks=vector<Mat>(), bool compactResult=false ) = 0; - - static bool isPossibleMatch( const Mat& mask, int queryIdx, int trainIdx ); - static bool isMaskedOut( const vector<Mat>& masks, int queryIdx ); - - static Mat clone_op( Mat m ) { return m.clone(); } - void checkMasks( const vector<Mat>& masks, int queryDescriptorsCount ) const; - - // Collection of descriptors from train images. - vector<Mat> trainDescCollection; -}; - -/* - * Brute-force descriptor matcher. - * - * For each descriptor in the first set, this matcher finds the closest - * descriptor in the second set by trying each one. - * - * For efficiency, BruteForceMatcher is templated on the distance metric. - * For float descriptors, a common choice would be cv::L2<float>. - */ -class CV_EXPORTS_W BFMatcher : public DescriptorMatcher -{ -public: - CV_WRAP BFMatcher( int normType=NORM_L2, bool crossCheck=false ); - virtual ~BFMatcher() {} - - virtual bool isMaskSupported() const { return true; } - - virtual Ptr<DescriptorMatcher> clone( bool emptyTrainData=false ) const; - - AlgorithmInfo* info() const; -protected: - virtual void knnMatchImpl( const Mat& queryDescriptors, vector<vector<DMatch> >& matches, int k, - const vector<Mat>& masks=vector<Mat>(), bool compactResult=false ); - virtual void radiusMatchImpl( const Mat& queryDescriptors, vector<vector<DMatch> >& matches, float maxDistance, - const vector<Mat>& masks=vector<Mat>(), bool compactResult=false ); - - int normType; - bool crossCheck; -}; - - -/* - * Flann based matcher - */ -class CV_EXPORTS_W FlannBasedMatcher : public DescriptorMatcher -{ -public: - CV_WRAP FlannBasedMatcher( const Ptr<flann::IndexParams>& indexParams=new flann::KDTreeIndexParams(), - const Ptr<flann::SearchParams>& searchParams=new flann::SearchParams() ); - - virtual void add( const vector<Mat>& descriptors ); - virtual void clear(); - - // Reads matcher object from a file node - virtual void read( const FileNode& ); - // Writes matcher object to a file storage - virtual void write( FileStorage& ) const; - - virtual void train(); - virtual bool isMaskSupported() const; - - virtual Ptr<DescriptorMatcher> clone( bool emptyTrainData=false ) const; - - AlgorithmInfo* info() const; -protected: - static void convertToDMatches( const DescriptorCollection& descriptors, - const Mat& indices, const Mat& distances, - vector<vector<DMatch> >& matches ); - - virtual void knnMatchImpl( const Mat& queryDescriptors, vector<vector<DMatch> >& matches, int k, - const vector<Mat>& masks=vector<Mat>(), bool compactResult=false ); - virtual void radiusMatchImpl( const Mat& queryDescriptors, vector<vector<DMatch> >& matches, float maxDistance, - const vector<Mat>& masks=vector<Mat>(), bool compactResult=false ); - - Ptr<flann::IndexParams> indexParams; - Ptr<flann::SearchParams> searchParams; - Ptr<flann::Index> flannIndex; - - DescriptorCollection mergedDescriptors; - int addedDescCount; -}; - -/****************************************************************************************\ -* GenericDescriptorMatcher * -\****************************************************************************************/ -/* - * Abstract interface for a keypoint descriptor and matcher - */ -class GenericDescriptorMatcher; -typedef GenericDescriptorMatcher GenericDescriptorMatch; - -class CV_EXPORTS GenericDescriptorMatcher -{ -public: - GenericDescriptorMatcher(); - virtual ~GenericDescriptorMatcher(); - - /* - * Add train collection: images and keypoints from them. - * images A set of train images. - * ketpoints Keypoint collection that have been detected on train images. - * - * Keypoints for which a descriptor cannot be computed are removed. Such keypoints - * must be filtered in this method befor adding keypoints to train collection "trainPointCollection". - * If inheritor class need perform such prefiltering the method add() must be overloaded. - * In the other class methods programmer has access to the train keypoints by a constant link. - */ - virtual void add( const vector<Mat>& images, - vector<vector<KeyPoint> >& keypoints ); - - const vector<Mat>& getTrainImages() const; - const vector<vector<KeyPoint> >& getTrainKeypoints() const; - - /* - * Clear images and keypoints storing in train collection. - */ - virtual void clear(); - /* - * Returns true if matcher supports mask to match descriptors. - */ - virtual bool isMaskSupported() = 0; - /* - * Train some inner structures (e.g. flann index or decision trees). - * train() methods is run every time in matching methods. So the method implementation - * should has a check whether these inner structures need be trained/retrained or not. - */ - virtual void train(); - - /* - * Classifies query keypoints. - * queryImage The query image - * queryKeypoints Keypoints from the query image - * trainImage The train image - * trainKeypoints Keypoints from the train image - */ - // Classify keypoints from query image under one train image. - void classify( const Mat& queryImage, vector<KeyPoint>& queryKeypoints, - const Mat& trainImage, vector<KeyPoint>& trainKeypoints ) const; - // Classify keypoints from query image under train image collection. - void classify( const Mat& queryImage, vector<KeyPoint>& queryKeypoints ); - - /* - * Group of methods to match keypoints from image pair. - * Keypoints for which a descriptor cannot be computed are removed. - * train() method is called here. - */ - // Find one best match for each query descriptor (if mask is empty). - void match( const Mat& queryImage, vector<KeyPoint>& queryKeypoints, - const Mat& trainImage, vector<KeyPoint>& trainKeypoints, - vector<DMatch>& matches, const Mat& mask=Mat() ) const; - // Find k best matches for each query keypoint (in increasing order of distances). - // compactResult is used when mask is not empty. If compactResult is false matches - // vector will have the same size as queryDescriptors rows. - // If compactResult is true matches vector will not contain matches for fully masked out query descriptors. - void knnMatch( const Mat& queryImage, vector<KeyPoint>& queryKeypoints, - const Mat& trainImage, vector<KeyPoint>& trainKeypoints, - vector<vector<DMatch> >& matches, int k, - const Mat& mask=Mat(), bool compactResult=false ) const; - // Find best matches for each query descriptor which have distance less than maxDistance (in increasing order of distances). - void radiusMatch( const Mat& queryImage, vector<KeyPoint>& queryKeypoints, - const Mat& trainImage, vector<KeyPoint>& trainKeypoints, - vector<vector<DMatch> >& matches, float maxDistance, - const Mat& mask=Mat(), bool compactResult=false ) const; - /* - * Group of methods to match keypoints from one image to image set. - * See description of similar methods for matching image pair above. - */ - void match( const Mat& queryImage, vector<KeyPoint>& queryKeypoints, - vector<DMatch>& matches, const vector<Mat>& masks=vector<Mat>() ); - void knnMatch( const Mat& queryImage, vector<KeyPoint>& queryKeypoints, - vector<vector<DMatch> >& matches, int k, - const vector<Mat>& masks=vector<Mat>(), bool compactResult=false ); - void radiusMatch( const Mat& queryImage, vector<KeyPoint>& queryKeypoints, - vector<vector<DMatch> >& matches, float maxDistance, - const vector<Mat>& masks=vector<Mat>(), bool compactResult=false ); - - // Reads matcher object from a file node - virtual void read( const FileNode& fn ); - // Writes matcher object to a file storage - virtual void write( FileStorage& fs ) const; - - // Return true if matching object is empty (e.g. feature detector or descriptor matcher are empty) - virtual bool empty() const; - - // Clone the matcher. If emptyTrainData is false the method create deep copy of the object, i.e. copies - // both parameters and train data. If emptyTrainData is true the method create object copy with current parameters - // but with empty train data. - virtual Ptr<GenericDescriptorMatcher> clone( bool emptyTrainData=false ) const = 0; - - static Ptr<GenericDescriptorMatcher> create( const string& genericDescritptorMatcherType, - const string ¶msFilename=string() ); - -protected: - // In fact the matching is implemented only by the following two methods. These methods suppose - // that the class object has been trained already. Public match methods call these methods - // after calling train(). - virtual void knnMatchImpl( const Mat& queryImage, vector<KeyPoint>& queryKeypoints, - vector<vector<DMatch> >& matches, int k, - const vector<Mat>& masks, bool compactResult ) = 0; - virtual void radiusMatchImpl( const Mat& queryImage, vector<KeyPoint>& queryKeypoints, - vector<vector<DMatch> >& matches, float maxDistance, - const vector<Mat>& masks, bool compactResult ) = 0; - /* - * A storage for sets of keypoints together with corresponding images and class IDs - */ - class CV_EXPORTS KeyPointCollection - { - public: - KeyPointCollection(); - KeyPointCollection( const KeyPointCollection& collection ); - void add( const vector<Mat>& images, const vector<vector<KeyPoint> >& keypoints ); - void clear(); - - // Returns the total number of keypoints in the collection - size_t keypointCount() const; - size_t imageCount() const; - - const vector<vector<KeyPoint> >& getKeypoints() const; - const vector<KeyPoint>& getKeypoints( int imgIdx ) const; - const KeyPoint& getKeyPoint( int imgIdx, int localPointIdx ) const; - const KeyPoint& getKeyPoint( int globalPointIdx ) const; - void getLocalIdx( int globalPointIdx, int& imgIdx, int& localPointIdx ) const; - - const vector<Mat>& getImages() const; - const Mat& getImage( int imgIdx ) const; - - protected: - int pointCount; - - vector<Mat> images; - vector<vector<KeyPoint> > keypoints; - // global indices of the first points in each image, startIndices.size() = keypoints.size() - vector<int> startIndices; - - private: - static Mat clone_op( Mat m ) { return m.clone(); } - }; - - KeyPointCollection trainPointCollection; -}; - - -/****************************************************************************************\ -* VectorDescriptorMatcher * -\****************************************************************************************/ - -/* - * A class used for matching descriptors that can be described as vectors in a finite-dimensional space - */ -class VectorDescriptorMatcher; -typedef VectorDescriptorMatcher VectorDescriptorMatch; - -class CV_EXPORTS VectorDescriptorMatcher : public GenericDescriptorMatcher -{ -public: - VectorDescriptorMatcher( const Ptr<DescriptorExtractor>& extractor, const Ptr<DescriptorMatcher>& matcher ); - virtual ~VectorDescriptorMatcher(); - - virtual void add( const vector<Mat>& imgCollection, - vector<vector<KeyPoint> >& pointCollection ); - - virtual void clear(); - - virtual void train(); - - virtual bool isMaskSupported(); - - virtual void read( const FileNode& fn ); - virtual void write( FileStorage& fs ) const; - virtual bool empty() const; - - virtual Ptr<GenericDescriptorMatcher> clone( bool emptyTrainData=false ) const; - -protected: - virtual void knnMatchImpl( const Mat& queryImage, vector<KeyPoint>& queryKeypoints, - vector<vector<DMatch> >& matches, int k, - const vector<Mat>& masks, bool compactResult ); - virtual void radiusMatchImpl( const Mat& queryImage, vector<KeyPoint>& queryKeypoints, - vector<vector<DMatch> >& matches, float maxDistance, - const vector<Mat>& masks, bool compactResult ); - - Ptr<DescriptorExtractor> extractor; - Ptr<DescriptorMatcher> matcher; -}; - -/****************************************************************************************\ -* Drawing functions * -\****************************************************************************************/ -struct CV_EXPORTS DrawMatchesFlags -{ - enum{ DEFAULT = 0, // Output image matrix will be created (Mat::create), - // i.e. existing memory of output image may be reused. - // Two source image, matches and single keypoints will be drawn. - // For each keypoint only the center point will be drawn (without - // the circle around keypoint with keypoint size and orientation). - DRAW_OVER_OUTIMG = 1, // Output image matrix will not be created (Mat::create). - // Matches will be drawn on existing content of output image. - NOT_DRAW_SINGLE_POINTS = 2, // Single keypoints will not be drawn. - DRAW_RICH_KEYPOINTS = 4 // For each keypoint the circle around keypoint with keypoint size and - // orientation will be drawn. - }; -}; - -// Draw keypoints. -CV_EXPORTS_W void drawKeypoints( const Mat& image, const vector<KeyPoint>& keypoints, CV_OUT Mat& outImage, - const Scalar& color=Scalar::all(-1), int flags=DrawMatchesFlags::DEFAULT ); - -// Draws matches of keypints from two images on output image. -CV_EXPORTS void drawMatches( const Mat& img1, const vector<KeyPoint>& keypoints1, - const Mat& img2, const vector<KeyPoint>& keypoints2, - const vector<DMatch>& matches1to2, Mat& outImg, - const Scalar& matchColor=Scalar::all(-1), const Scalar& singlePointColor=Scalar::all(-1), - const vector<char>& matchesMask=vector<char>(), int flags=DrawMatchesFlags::DEFAULT ); - -CV_EXPORTS void drawMatches( const Mat& img1, const vector<KeyPoint>& keypoints1, - const Mat& img2, const vector<KeyPoint>& keypoints2, - const vector<vector<DMatch> >& matches1to2, Mat& outImg, - const Scalar& matchColor=Scalar::all(-1), const Scalar& singlePointColor=Scalar::all(-1), - const vector<vector<char> >& matchesMask=vector<vector<char> >(), int flags=DrawMatchesFlags::DEFAULT ); - -/****************************************************************************************\ -* Functions to evaluate the feature detectors and [generic] descriptor extractors * -\****************************************************************************************/ - -CV_EXPORTS void evaluateFeatureDetector( const Mat& img1, const Mat& img2, const Mat& H1to2, - vector<KeyPoint>* keypoints1, vector<KeyPoint>* keypoints2, - float& repeatability, int& correspCount, - const Ptr<FeatureDetector>& fdetector=Ptr<FeatureDetector>() ); - -CV_EXPORTS void computeRecallPrecisionCurve( const vector<vector<DMatch> >& matches1to2, - const vector<vector<uchar> >& correctMatches1to2Mask, - vector<Point2f>& recallPrecisionCurve ); - -CV_EXPORTS float getRecall( const vector<Point2f>& recallPrecisionCurve, float l_precision ); -CV_EXPORTS int getNearestPoint( const vector<Point2f>& recallPrecisionCurve, float l_precision ); - -CV_EXPORTS void evaluateGenericDescriptorMatcher( const Mat& img1, const Mat& img2, const Mat& H1to2, - vector<KeyPoint>& keypoints1, vector<KeyPoint>& keypoints2, - vector<vector<DMatch> >* matches1to2, vector<vector<uchar> >* correctMatches1to2Mask, - vector<Point2f>& recallPrecisionCurve, - const Ptr<GenericDescriptorMatcher>& dmatch=Ptr<GenericDescriptorMatcher>() ); - - -/****************************************************************************************\ -* Bag of visual words * -\****************************************************************************************/ -/* - * Abstract base class for training of a 'bag of visual words' vocabulary from a set of descriptors - */ -class CV_EXPORTS_W BOWTrainer -{ -public: - BOWTrainer(); - virtual ~BOWTrainer(); - - CV_WRAP void add( const Mat& descriptors ); - CV_WRAP const vector<Mat>& getDescriptors() const; - CV_WRAP int descripotorsCount() const; - - CV_WRAP virtual void clear(); - - /* - * Train visual words vocabulary, that is cluster training descriptors and - * compute cluster centers. - * Returns cluster centers. - * - * descriptors Training descriptors computed on images keypoints. - */ - CV_WRAP virtual Mat cluster() const = 0; - CV_WRAP virtual Mat cluster( const Mat& descriptors ) const = 0; - -protected: - vector<Mat> descriptors; - int size; -}; - -/* - * This is BOWTrainer using cv::kmeans to get vocabulary. - */ -class CV_EXPORTS_W BOWKMeansTrainer : public BOWTrainer -{ -public: - CV_WRAP BOWKMeansTrainer( int clusterCount, const TermCriteria& termcrit=TermCriteria(), - int attempts=3, int flags=KMEANS_PP_CENTERS ); - virtual ~BOWKMeansTrainer(); - - // Returns trained vocabulary (i.e. cluster centers). - CV_WRAP virtual Mat cluster() const; - CV_WRAP virtual Mat cluster( const Mat& descriptors ) const; - -protected: - - int clusterCount; - TermCriteria termcrit; - int attempts; - int flags; -}; - -/* - * Class to compute image descriptor using bag of visual words. - */ -class CV_EXPORTS_W BOWImgDescriptorExtractor -{ -public: - CV_WRAP BOWImgDescriptorExtractor( const Ptr<DescriptorExtractor>& dextractor, - const Ptr<DescriptorMatcher>& dmatcher ); - virtual ~BOWImgDescriptorExtractor(); - - CV_WRAP void setVocabulary( const Mat& vocabulary ); - CV_WRAP const Mat& getVocabulary() const; - void compute( const Mat& image, vector<KeyPoint>& keypoints, Mat& imgDescriptor, - vector<vector<int> >* pointIdxsOfClusters=0, Mat* descriptors=0 ); - // compute() is not constant because DescriptorMatcher::match is not constant - - CV_WRAP_AS(compute) void compute2( const Mat& image, vector<KeyPoint>& keypoints, CV_OUT Mat& imgDescriptor ) - { compute(image,keypoints,imgDescriptor); } - - CV_WRAP int descriptorSize() const; - CV_WRAP int descriptorType() const; - -protected: - Mat vocabulary; - Ptr<DescriptorExtractor> dextractor; - Ptr<DescriptorMatcher> dmatcher; -}; - -} /* namespace cv */ - -#endif /* __cplusplus */ - -#endif - -/* End of file. */ |