summaryrefslogtreecommitdiff
path: root/2.3-1/thirdparty/raspberrypi/includes/opencv2/features2d/features2d.hpp
diff options
context:
space:
mode:
Diffstat (limited to '2.3-1/thirdparty/raspberrypi/includes/opencv2/features2d/features2d.hpp')
-rw-r--r--2.3-1/thirdparty/raspberrypi/includes/opencv2/features2d/features2d.hpp1616
1 files changed, 0 insertions, 1616 deletions
diff --git a/2.3-1/thirdparty/raspberrypi/includes/opencv2/features2d/features2d.hpp b/2.3-1/thirdparty/raspberrypi/includes/opencv2/features2d/features2d.hpp
deleted file mode 100644
index e4e796fb..00000000
--- a/2.3-1/thirdparty/raspberrypi/includes/opencv2/features2d/features2d.hpp
+++ /dev/null
@@ -1,1616 +0,0 @@
-/*M///////////////////////////////////////////////////////////////////////////////////////
-//
-// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
-//
-// By downloading, copying, installing or using the software you agree to this license.
-// If you do not agree to this license, do not download, install,
-// copy or use the software.
-//
-//
-// License Agreement
-// For Open Source Computer Vision Library
-//
-// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
-// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
-// Third party copyrights are property of their respective owners.
-//
-// Redistribution and use in source and binary forms, with or without modification,
-// are permitted provided that the following conditions are met:
-//
-// * Redistribution's of source code must retain the above copyright notice,
-// this list of conditions and the following disclaimer.
-//
-// * Redistribution's in binary form must reproduce the above copyright notice,
-// this list of conditions and the following disclaimer in the documentation
-// and/or other materials provided with the distribution.
-//
-// * The name of the copyright holders may not be used to endorse or promote products
-// derived from this software without specific prior written permission.
-//
-// This software is provided by the copyright holders and contributors "as is" and
-// any express or implied warranties, including, but not limited to, the implied
-// warranties of merchantability and fitness for a particular purpose are disclaimed.
-// In no event shall the Intel Corporation or contributors be liable for any direct,
-// indirect, incidental, special, exemplary, or consequential damages
-// (including, but not limited to, procurement of substitute goods or services;
-// loss of use, data, or profits; or business interruption) however caused
-// and on any theory of liability, whether in contract, strict liability,
-// or tort (including negligence or otherwise) arising in any way out of
-// the use of this software, even if advised of the possibility of such damage.
-//
-//M*/
-
-#ifndef __OPENCV_FEATURES_2D_HPP__
-#define __OPENCV_FEATURES_2D_HPP__
-
-#include "opencv2/core/core.hpp"
-#include "opencv2/flann/miniflann.hpp"
-
-#ifdef __cplusplus
-#include <limits>
-
-namespace cv
-{
-
-CV_EXPORTS bool initModule_features2d();
-
-/*!
- The Keypoint Class
-
- The class instance stores a keypoint, i.e. a point feature found by one of many available keypoint detectors, such as
- Harris corner detector, cv::FAST, cv::StarDetector, cv::SURF, cv::SIFT, cv::LDetector etc.
-
- The keypoint is characterized by the 2D position, scale
- (proportional to the diameter of the neighborhood that needs to be taken into account),
- orientation and some other parameters. The keypoint neighborhood is then analyzed by another algorithm that builds a descriptor
- (usually represented as a feature vector). The keypoints representing the same object in different images can then be matched using
- cv::KDTree or another method.
-*/
-class CV_EXPORTS_W_SIMPLE KeyPoint
-{
-public:
- //! the default constructor
- CV_WRAP KeyPoint() : pt(0,0), size(0), angle(-1), response(0), octave(0), class_id(-1) {}
- //! the full constructor
- KeyPoint(Point2f _pt, float _size, float _angle=-1,
- float _response=0, int _octave=0, int _class_id=-1)
- : pt(_pt), size(_size), angle(_angle),
- response(_response), octave(_octave), class_id(_class_id) {}
- //! another form of the full constructor
- CV_WRAP KeyPoint(float x, float y, float _size, float _angle=-1,
- float _response=0, int _octave=0, int _class_id=-1)
- : pt(x, y), size(_size), angle(_angle),
- response(_response), octave(_octave), class_id(_class_id) {}
-
- size_t hash() const;
-
- //! converts vector of keypoints to vector of points
- static void convert(const vector<KeyPoint>& keypoints,
- CV_OUT vector<Point2f>& points2f,
- const vector<int>& keypointIndexes=vector<int>());
- //! converts vector of points to the vector of keypoints, where each keypoint is assigned the same size and the same orientation
- static void convert(const vector<Point2f>& points2f,
- CV_OUT vector<KeyPoint>& keypoints,
- float size=1, float response=1, int octave=0, int class_id=-1);
-
- //! computes overlap for pair of keypoints;
- //! overlap is a ratio between area of keypoint regions intersection and
- //! area of keypoint regions union (now keypoint region is circle)
- static float overlap(const KeyPoint& kp1, const KeyPoint& kp2);
-
- CV_PROP_RW Point2f pt; //!< coordinates of the keypoints
- CV_PROP_RW float size; //!< diameter of the meaningful keypoint neighborhood
- CV_PROP_RW float angle; //!< computed orientation of the keypoint (-1 if not applicable);
- //!< it's in [0,360) degrees and measured relative to
- //!< image coordinate system, ie in clockwise.
- CV_PROP_RW float response; //!< the response by which the most strong keypoints have been selected. Can be used for the further sorting or subsampling
- CV_PROP_RW int octave; //!< octave (pyramid layer) from which the keypoint has been extracted
- CV_PROP_RW int class_id; //!< object class (if the keypoints need to be clustered by an object they belong to)
-};
-
-//! writes vector of keypoints to the file storage
-CV_EXPORTS void write(FileStorage& fs, const string& name, const vector<KeyPoint>& keypoints);
-//! reads vector of keypoints from the specified file storage node
-CV_EXPORTS void read(const FileNode& node, CV_OUT vector<KeyPoint>& keypoints);
-
-/*
- * A class filters a vector of keypoints.
- * Because now it is difficult to provide a convenient interface for all usage scenarios of the keypoints filter class,
- * it has only several needed by now static methods.
- */
-class CV_EXPORTS KeyPointsFilter
-{
-public:
- KeyPointsFilter(){}
-
- /*
- * Remove keypoints within borderPixels of an image edge.
- */
- static void runByImageBorder( vector<KeyPoint>& keypoints, Size imageSize, int borderSize );
- /*
- * Remove keypoints of sizes out of range.
- */
- static void runByKeypointSize( vector<KeyPoint>& keypoints, float minSize,
- float maxSize=FLT_MAX );
- /*
- * Remove keypoints from some image by mask for pixels of this image.
- */
- static void runByPixelsMask( vector<KeyPoint>& keypoints, const Mat& mask );
- /*
- * Remove duplicated keypoints.
- */
- static void removeDuplicated( vector<KeyPoint>& keypoints );
-
- /*
- * Retain the specified number of the best keypoints (according to the response)
- */
- static void retainBest( vector<KeyPoint>& keypoints, int npoints );
-};
-
-
-/************************************ Base Classes ************************************/
-
-/*
- * Abstract base class for 2D image feature detectors.
- */
-class CV_EXPORTS_W FeatureDetector : public virtual Algorithm
-{
-public:
- virtual ~FeatureDetector();
-
- /*
- * Detect keypoints in an image.
- * image The image.
- * keypoints The detected keypoints.
- * mask Mask specifying where to look for keypoints (optional). Must be a char
- * matrix with non-zero values in the region of interest.
- */
- CV_WRAP void detect( const Mat& image, CV_OUT vector<KeyPoint>& keypoints, const Mat& mask=Mat() ) const;
-
- /*
- * Detect keypoints in an image set.
- * images Image collection.
- * keypoints Collection of keypoints detected in an input images. keypoints[i] is a set of keypoints detected in an images[i].
- * masks Masks for image set. masks[i] is a mask for images[i].
- */
- void detect( const vector<Mat>& images, vector<vector<KeyPoint> >& keypoints, const vector<Mat>& masks=vector<Mat>() ) const;
-
- // Return true if detector object is empty
- CV_WRAP virtual bool empty() const;
-
- // Create feature detector by detector name.
- CV_WRAP static Ptr<FeatureDetector> create( const string& detectorType );
-
-protected:
- virtual void detectImpl( const Mat& image, vector<KeyPoint>& keypoints, const Mat& mask=Mat() ) const = 0;
-
- /*
- * Remove keypoints that are not in the mask.
- * Helper function, useful when wrapping a library call for keypoint detection that
- * does not support a mask argument.
- */
- static void removeInvalidPoints( const Mat& mask, vector<KeyPoint>& keypoints );
-};
-
-
-/*
- * Abstract base class for computing descriptors for image keypoints.
- *
- * In this interface we assume a keypoint descriptor can be represented as a
- * dense, fixed-dimensional vector of some basic type. Most descriptors used
- * in practice follow this pattern, as it makes it very easy to compute
- * distances between descriptors. Therefore we represent a collection of
- * descriptors as a Mat, where each row is one keypoint descriptor.
- */
-class CV_EXPORTS_W DescriptorExtractor : public virtual Algorithm
-{
-public:
- virtual ~DescriptorExtractor();
-
- /*
- * Compute the descriptors for a set of keypoints in an image.
- * image The image.
- * keypoints The input keypoints. Keypoints for which a descriptor cannot be computed are removed.
- * descriptors Copmputed descriptors. Row i is the descriptor for keypoint i.
- */
- CV_WRAP void compute( const Mat& image, CV_OUT CV_IN_OUT vector<KeyPoint>& keypoints, CV_OUT Mat& descriptors ) const;
-
- /*
- * Compute the descriptors for a keypoints collection detected in image collection.
- * images Image collection.
- * keypoints Input keypoints collection. keypoints[i] is keypoints detected in images[i].
- * Keypoints for which a descriptor cannot be computed are removed.
- * descriptors Descriptor collection. descriptors[i] are descriptors computed for set keypoints[i].
- */
- void compute( const vector<Mat>& images, vector<vector<KeyPoint> >& keypoints, vector<Mat>& descriptors ) const;
-
- CV_WRAP virtual int descriptorSize() const = 0;
- CV_WRAP virtual int descriptorType() const = 0;
-
- CV_WRAP virtual bool empty() const;
-
- CV_WRAP static Ptr<DescriptorExtractor> create( const string& descriptorExtractorType );
-
-protected:
- virtual void computeImpl( const Mat& image, vector<KeyPoint>& keypoints, Mat& descriptors ) const = 0;
-
- /*
- * Remove keypoints within borderPixels of an image edge.
- */
- static void removeBorderKeypoints( vector<KeyPoint>& keypoints,
- Size imageSize, int borderSize );
-};
-
-
-
-/*
- * Abstract base class for simultaneous 2D feature detection descriptor extraction.
- */
-class CV_EXPORTS_W Feature2D : public FeatureDetector, public DescriptorExtractor
-{
-public:
- /*
- * Detect keypoints in an image.
- * image The image.
- * keypoints The detected keypoints.
- * mask Mask specifying where to look for keypoints (optional). Must be a char
- * matrix with non-zero values in the region of interest.
- * useProvidedKeypoints If true, the method will skip the detection phase and will compute
- * descriptors for the provided keypoints
- */
- CV_WRAP_AS(detectAndCompute) virtual void operator()( InputArray image, InputArray mask,
- CV_OUT vector<KeyPoint>& keypoints,
- OutputArray descriptors,
- bool useProvidedKeypoints=false ) const = 0;
-
- CV_WRAP void compute( const Mat& image, CV_OUT CV_IN_OUT std::vector<KeyPoint>& keypoints, CV_OUT Mat& descriptors ) const;
-
- // Create feature detector and descriptor extractor by name.
- CV_WRAP static Ptr<Feature2D> create( const string& name );
-};
-
-/*!
- BRISK implementation
-*/
-class CV_EXPORTS_W BRISK : public Feature2D
-{
-public:
- CV_WRAP explicit BRISK(int thresh=30, int octaves=3, float patternScale=1.0f);
-
- virtual ~BRISK();
-
- // returns the descriptor size in bytes
- int descriptorSize() const;
- // returns the descriptor type
- int descriptorType() const;
-
- // Compute the BRISK features on an image
- void operator()(InputArray image, InputArray mask, vector<KeyPoint>& keypoints) const;
-
- // Compute the BRISK features and descriptors on an image
- void operator()( InputArray image, InputArray mask, vector<KeyPoint>& keypoints,
- OutputArray descriptors, bool useProvidedKeypoints=false ) const;
-
- AlgorithmInfo* info() const;
-
- // custom setup
- CV_WRAP explicit BRISK(std::vector<float> &radiusList, std::vector<int> &numberList,
- float dMax=5.85f, float dMin=8.2f, std::vector<int> indexChange=std::vector<int>());
-
- // call this to generate the kernel:
- // circle of radius r (pixels), with n points;
- // short pairings with dMax, long pairings with dMin
- CV_WRAP void generateKernel(std::vector<float> &radiusList,
- std::vector<int> &numberList, float dMax=5.85f, float dMin=8.2f,
- std::vector<int> indexChange=std::vector<int>());
-
-protected:
-
- void computeImpl( const Mat& image, vector<KeyPoint>& keypoints, Mat& descriptors ) const;
- void detectImpl( const Mat& image, vector<KeyPoint>& keypoints, const Mat& mask=Mat() ) const;
-
- void computeKeypointsNoOrientation(InputArray image, InputArray mask, vector<KeyPoint>& keypoints) const;
- void computeDescriptorsAndOrOrientation(InputArray image, InputArray mask, vector<KeyPoint>& keypoints,
- OutputArray descriptors, bool doDescriptors, bool doOrientation,
- bool useProvidedKeypoints) const;
-
- // Feature parameters
- CV_PROP_RW int threshold;
- CV_PROP_RW int octaves;
-
- // some helper structures for the Brisk pattern representation
- struct BriskPatternPoint{
- float x; // x coordinate relative to center
- float y; // x coordinate relative to center
- float sigma; // Gaussian smoothing sigma
- };
- struct BriskShortPair{
- unsigned int i; // index of the first pattern point
- unsigned int j; // index of other pattern point
- };
- struct BriskLongPair{
- unsigned int i; // index of the first pattern point
- unsigned int j; // index of other pattern point
- int weighted_dx; // 1024.0/dx
- int weighted_dy; // 1024.0/dy
- };
- inline int smoothedIntensity(const cv::Mat& image,
- const cv::Mat& integral,const float key_x,
- const float key_y, const unsigned int scale,
- const unsigned int rot, const unsigned int point) const;
- // pattern properties
- BriskPatternPoint* patternPoints_; //[i][rotation][scale]
- unsigned int points_; // total number of collocation points
- float* scaleList_; // lists the scaling per scale index [scale]
- unsigned int* sizeList_; // lists the total pattern size per scale index [scale]
- static const unsigned int scales_; // scales discretization
- static const float scalerange_; // span of sizes 40->4 Octaves - else, this needs to be adjusted...
- static const unsigned int n_rot_; // discretization of the rotation look-up
-
- // pairs
- int strings_; // number of uchars the descriptor consists of
- float dMax_; // short pair maximum distance
- float dMin_; // long pair maximum distance
- BriskShortPair* shortPairs_; // d<_dMax
- BriskLongPair* longPairs_; // d>_dMin
- unsigned int noShortPairs_; // number of shortParis
- unsigned int noLongPairs_; // number of longParis
-
- // general
- static const float basicSize_;
-};
-
-
-/*!
- ORB implementation.
-*/
-class CV_EXPORTS_W ORB : public Feature2D
-{
-public:
- // the size of the signature in bytes
- enum { kBytes = 32, HARRIS_SCORE=0, FAST_SCORE=1 };
-
- CV_WRAP explicit ORB(int nfeatures = 500, float scaleFactor = 1.2f, int nlevels = 8, int edgeThreshold = 31,
- int firstLevel = 0, int WTA_K=2, int scoreType=ORB::HARRIS_SCORE, int patchSize=31 );
-
- // returns the descriptor size in bytes
- int descriptorSize() const;
- // returns the descriptor type
- int descriptorType() const;
-
- // Compute the ORB features and descriptors on an image
- void operator()(InputArray image, InputArray mask, vector<KeyPoint>& keypoints) const;
-
- // Compute the ORB features and descriptors on an image
- void operator()( InputArray image, InputArray mask, vector<KeyPoint>& keypoints,
- OutputArray descriptors, bool useProvidedKeypoints=false ) const;
-
- AlgorithmInfo* info() const;
-
-protected:
-
- void computeImpl( const Mat& image, vector<KeyPoint>& keypoints, Mat& descriptors ) const;
- void detectImpl( const Mat& image, vector<KeyPoint>& keypoints, const Mat& mask=Mat() ) const;
-
- CV_PROP_RW int nfeatures;
- CV_PROP_RW double scaleFactor;
- CV_PROP_RW int nlevels;
- CV_PROP_RW int edgeThreshold;
- CV_PROP_RW int firstLevel;
- CV_PROP_RW int WTA_K;
- CV_PROP_RW int scoreType;
- CV_PROP_RW int patchSize;
-};
-
-typedef ORB OrbFeatureDetector;
-typedef ORB OrbDescriptorExtractor;
-
-/*!
- FREAK implementation
-*/
-class CV_EXPORTS FREAK : public DescriptorExtractor
-{
-public:
- /** Constructor
- * @param orientationNormalized enable orientation normalization
- * @param scaleNormalized enable scale normalization
- * @param patternScale scaling of the description pattern
- * @param nOctaves number of octaves covered by the detected keypoints
- * @param selectedPairs (optional) user defined selected pairs
- */
- explicit FREAK( bool orientationNormalized = true,
- bool scaleNormalized = true,
- float patternScale = 22.0f,
- int nOctaves = 4,
- const vector<int>& selectedPairs = vector<int>());
- FREAK( const FREAK& rhs );
- FREAK& operator=( const FREAK& );
-
- virtual ~FREAK();
-
- /** returns the descriptor length in bytes */
- virtual int descriptorSize() const;
-
- /** returns the descriptor type */
- virtual int descriptorType() const;
-
- /** select the 512 "best description pairs"
- * @param images grayscale images set
- * @param keypoints set of detected keypoints
- * @param corrThresh correlation threshold
- * @param verbose print construction information
- * @return list of best pair indexes
- */
- vector<int> selectPairs( const vector<Mat>& images, vector<vector<KeyPoint> >& keypoints,
- const double corrThresh = 0.7, bool verbose = true );
-
- AlgorithmInfo* info() const;
-
- enum
- {
- NB_SCALES = 64, NB_PAIRS = 512, NB_ORIENPAIRS = 45
- };
-
-protected:
- virtual void computeImpl( const Mat& image, vector<KeyPoint>& keypoints, Mat& descriptors ) const;
- void buildPattern();
- uchar meanIntensity( const Mat& image, const Mat& integral, const float kp_x, const float kp_y,
- const unsigned int scale, const unsigned int rot, const unsigned int point ) const;
-
- bool orientationNormalized; //true if the orientation is normalized, false otherwise
- bool scaleNormalized; //true if the scale is normalized, false otherwise
- double patternScale; //scaling of the pattern
- int nOctaves; //number of octaves
- bool extAll; // true if all pairs need to be extracted for pairs selection
-
- double patternScale0;
- int nOctaves0;
- vector<int> selectedPairs0;
-
- struct PatternPoint
- {
- float x; // x coordinate relative to center
- float y; // x coordinate relative to center
- float sigma; // Gaussian smoothing sigma
- };
-
- struct DescriptionPair
- {
- uchar i; // index of the first point
- uchar j; // index of the second point
- };
-
- struct OrientationPair
- {
- uchar i; // index of the first point
- uchar j; // index of the second point
- int weight_dx; // dx/(norm_sq))*4096
- int weight_dy; // dy/(norm_sq))*4096
- };
-
- vector<PatternPoint> patternLookup; // look-up table for the pattern points (position+sigma of all points at all scales and orientation)
- int patternSizes[NB_SCALES]; // size of the pattern at a specific scale (used to check if a point is within image boundaries)
- DescriptionPair descriptionPairs[NB_PAIRS];
- OrientationPair orientationPairs[NB_ORIENPAIRS];
-};
-
-
-/*!
- Maximal Stable Extremal Regions class.
-
- The class implements MSER algorithm introduced by J. Matas.
- Unlike SIFT, SURF and many other detectors in OpenCV, this is salient region detector,
- not the salient point detector.
-
- It returns the regions, each of those is encoded as a contour.
-*/
-class CV_EXPORTS_W MSER : public FeatureDetector
-{
-public:
- //! the full constructor
- CV_WRAP explicit MSER( int _delta=5, int _min_area=60, int _max_area=14400,
- double _max_variation=0.25, double _min_diversity=.2,
- int _max_evolution=200, double _area_threshold=1.01,
- double _min_margin=0.003, int _edge_blur_size=5 );
-
- //! the operator that extracts the MSERs from the image or the specific part of it
- CV_WRAP_AS(detect) void operator()( const Mat& image, CV_OUT vector<vector<Point> >& msers,
- const Mat& mask=Mat() ) const;
- AlgorithmInfo* info() const;
-
-protected:
- void detectImpl( const Mat& image, vector<KeyPoint>& keypoints, const Mat& mask=Mat() ) const;
-
- int delta;
- int minArea;
- int maxArea;
- double maxVariation;
- double minDiversity;
- int maxEvolution;
- double areaThreshold;
- double minMargin;
- int edgeBlurSize;
-};
-
-typedef MSER MserFeatureDetector;
-
-/*!
- The "Star" Detector.
-
- The class implements the keypoint detector introduced by K. Konolige.
-*/
-class CV_EXPORTS_W StarDetector : public FeatureDetector
-{
-public:
- //! the full constructor
- CV_WRAP StarDetector(int _maxSize=45, int _responseThreshold=30,
- int _lineThresholdProjected=10,
- int _lineThresholdBinarized=8,
- int _suppressNonmaxSize=5);
-
- //! finds the keypoints in the image
- CV_WRAP_AS(detect) void operator()(const Mat& image,
- CV_OUT vector<KeyPoint>& keypoints) const;
-
- AlgorithmInfo* info() const;
-
-protected:
- void detectImpl( const Mat& image, vector<KeyPoint>& keypoints, const Mat& mask=Mat() ) const;
-
- int maxSize;
- int responseThreshold;
- int lineThresholdProjected;
- int lineThresholdBinarized;
- int suppressNonmaxSize;
-};
-
-//! detects corners using FAST algorithm by E. Rosten
-CV_EXPORTS void FAST( InputArray image, CV_OUT vector<KeyPoint>& keypoints,
- int threshold, bool nonmaxSuppression=true );
-
-CV_EXPORTS void FASTX( InputArray image, CV_OUT vector<KeyPoint>& keypoints,
- int threshold, bool nonmaxSuppression, int type );
-
-class CV_EXPORTS_W FastFeatureDetector : public FeatureDetector
-{
-public:
-
- enum
- { // Define it in old class to simplify migration to 2.5
- TYPE_5_8 = 0, TYPE_7_12 = 1, TYPE_9_16 = 2
- };
-
- CV_WRAP FastFeatureDetector( int threshold=10, bool nonmaxSuppression=true );
- AlgorithmInfo* info() const;
-
-protected:
- virtual void detectImpl( const Mat& image, vector<KeyPoint>& keypoints, const Mat& mask=Mat() ) const;
-
- int threshold;
- bool nonmaxSuppression;
-};
-
-
-class CV_EXPORTS_W GFTTDetector : public FeatureDetector
-{
-public:
- CV_WRAP GFTTDetector( int maxCorners=1000, double qualityLevel=0.01, double minDistance=1,
- int blockSize=3, bool useHarrisDetector=false, double k=0.04 );
- AlgorithmInfo* info() const;
-
-protected:
- virtual void detectImpl( const Mat& image, vector<KeyPoint>& keypoints, const Mat& mask=Mat() ) const;
-
- int nfeatures;
- double qualityLevel;
- double minDistance;
- int blockSize;
- bool useHarrisDetector;
- double k;
-};
-
-typedef GFTTDetector GoodFeaturesToTrackDetector;
-typedef StarDetector StarFeatureDetector;
-
-class CV_EXPORTS_W SimpleBlobDetector : public FeatureDetector
-{
-public:
- struct CV_EXPORTS_W_SIMPLE Params
- {
- CV_WRAP Params();
- CV_PROP_RW float thresholdStep;
- CV_PROP_RW float minThreshold;
- CV_PROP_RW float maxThreshold;
- CV_PROP_RW size_t minRepeatability;
- CV_PROP_RW float minDistBetweenBlobs;
-
- CV_PROP_RW bool filterByColor;
- CV_PROP_RW uchar blobColor;
-
- CV_PROP_RW bool filterByArea;
- CV_PROP_RW float minArea, maxArea;
-
- CV_PROP_RW bool filterByCircularity;
- CV_PROP_RW float minCircularity, maxCircularity;
-
- CV_PROP_RW bool filterByInertia;
- CV_PROP_RW float minInertiaRatio, maxInertiaRatio;
-
- CV_PROP_RW bool filterByConvexity;
- CV_PROP_RW float minConvexity, maxConvexity;
-
- void read( const FileNode& fn );
- void write( FileStorage& fs ) const;
- };
-
- CV_WRAP SimpleBlobDetector(const SimpleBlobDetector::Params &parameters = SimpleBlobDetector::Params());
-
- virtual void read( const FileNode& fn );
- virtual void write( FileStorage& fs ) const;
-
-protected:
- struct CV_EXPORTS Center
- {
- Point2d location;
- double radius;
- double confidence;
- };
-
- virtual void detectImpl( const Mat& image, vector<KeyPoint>& keypoints, const Mat& mask=Mat() ) const;
- virtual void findBlobs(const Mat &image, const Mat &binaryImage, vector<Center> &centers) const;
-
- Params params;
- AlgorithmInfo* info() const;
-};
-
-
-class CV_EXPORTS DenseFeatureDetector : public FeatureDetector
-{
-public:
- explicit DenseFeatureDetector( float initFeatureScale=1.f, int featureScaleLevels=1,
- float featureScaleMul=0.1f,
- int initXyStep=6, int initImgBound=0,
- bool varyXyStepWithScale=true,
- bool varyImgBoundWithScale=false );
- AlgorithmInfo* info() const;
-
-protected:
- virtual void detectImpl( const Mat& image, vector<KeyPoint>& keypoints, const Mat& mask=Mat() ) const;
-
- double initFeatureScale;
- int featureScaleLevels;
- double featureScaleMul;
-
- int initXyStep;
- int initImgBound;
-
- bool varyXyStepWithScale;
- bool varyImgBoundWithScale;
-};
-
-/*
- * Adapts a detector to partition the source image into a grid and detect
- * points in each cell.
- */
-class CV_EXPORTS_W GridAdaptedFeatureDetector : public FeatureDetector
-{
-public:
- /*
- * detector Detector that will be adapted.
- * maxTotalKeypoints Maximum count of keypoints detected on the image. Only the strongest keypoints
- * will be keeped.
- * gridRows Grid rows count.
- * gridCols Grid column count.
- */
- CV_WRAP GridAdaptedFeatureDetector( const Ptr<FeatureDetector>& detector=0,
- int maxTotalKeypoints=1000,
- int gridRows=4, int gridCols=4 );
-
- // TODO implement read/write
- virtual bool empty() const;
-
- AlgorithmInfo* info() const;
-
-protected:
- virtual void detectImpl( const Mat& image, vector<KeyPoint>& keypoints, const Mat& mask=Mat() ) const;
-
- Ptr<FeatureDetector> detector;
- int maxTotalKeypoints;
- int gridRows;
- int gridCols;
-};
-
-/*
- * Adapts a detector to detect points over multiple levels of a Gaussian
- * pyramid. Useful for detectors that are not inherently scaled.
- */
-class CV_EXPORTS_W PyramidAdaptedFeatureDetector : public FeatureDetector
-{
-public:
- // maxLevel - The 0-based index of the last pyramid layer
- CV_WRAP PyramidAdaptedFeatureDetector( const Ptr<FeatureDetector>& detector, int maxLevel=2 );
-
- // TODO implement read/write
- virtual bool empty() const;
-
-protected:
- virtual void detectImpl( const Mat& image, vector<KeyPoint>& keypoints, const Mat& mask=Mat() ) const;
-
- Ptr<FeatureDetector> detector;
- int maxLevel;
-};
-
-/** \brief A feature detector parameter adjuster, this is used by the DynamicAdaptedFeatureDetector
- * and is a wrapper for FeatureDetector that allow them to be adjusted after a detection
- */
-class CV_EXPORTS AdjusterAdapter: public FeatureDetector
-{
-public:
- /** pure virtual interface
- */
- virtual ~AdjusterAdapter() {}
- /** too few features were detected so, adjust the detector params accordingly
- * \param min the minimum number of desired features
- * \param n_detected the number previously detected
- */
- virtual void tooFew(int min, int n_detected) = 0;
- /** too many features were detected so, adjust the detector params accordingly
- * \param max the maximum number of desired features
- * \param n_detected the number previously detected
- */
- virtual void tooMany(int max, int n_detected) = 0;
- /** are params maxed out or still valid?
- * \return false if the parameters can't be adjusted any more
- */
- virtual bool good() const = 0;
-
- virtual Ptr<AdjusterAdapter> clone() const = 0;
-
- static Ptr<AdjusterAdapter> create( const string& detectorType );
-};
-/** \brief an adaptively adjusting detector that iteratively detects until the desired number
- * of features are detected.
- * Beware that this is not thread safe - as the adjustment of parameters breaks the const
- * of the detection routine...
- * /TODO Make this const correct and thread safe
- *
- * sample usage:
- //will create a detector that attempts to find 100 - 110 FAST Keypoints, and will at most run
- //FAST feature detection 10 times until that number of keypoints are found
- Ptr<FeatureDetector> detector(new DynamicAdaptedFeatureDetector(new FastAdjuster(20,true),100, 110, 10));
-
- */
-class CV_EXPORTS DynamicAdaptedFeatureDetector: public FeatureDetector
-{
-public:
-
- /** \param adjuster an AdjusterAdapter that will do the detection and parameter adjustment
- * \param max_features the maximum desired number of features
- * \param max_iters the maximum number of times to try to adjust the feature detector params
- * for the FastAdjuster this can be high, but with Star or Surf this can get time consuming
- * \param min_features the minimum desired features
- */
- DynamicAdaptedFeatureDetector( const Ptr<AdjusterAdapter>& adjuster, int min_features=400, int max_features=500, int max_iters=5 );
-
- virtual bool empty() const;
-
-protected:
- virtual void detectImpl( const Mat& image, vector<KeyPoint>& keypoints, const Mat& mask=Mat() ) const;
-
-private:
- DynamicAdaptedFeatureDetector& operator=(const DynamicAdaptedFeatureDetector&);
- DynamicAdaptedFeatureDetector(const DynamicAdaptedFeatureDetector&);
-
- int escape_iters_;
- int min_features_, max_features_;
- const Ptr<AdjusterAdapter> adjuster_;
-};
-
-/**\brief an adjust for the FAST detector. This will basically decrement or increment the
- * threshold by 1
- */
-class CV_EXPORTS FastAdjuster: public AdjusterAdapter
-{
-public:
- /**\param init_thresh the initial threshold to start with, default = 20
- * \param nonmax whether to use non max or not for fast feature detection
- * \param min_thresh
- * \param max_thresh
- */
- FastAdjuster(int init_thresh=20, bool nonmax=true, int min_thresh=1, int max_thresh=200);
-
- virtual void tooFew(int minv, int n_detected);
- virtual void tooMany(int maxv, int n_detected);
- virtual bool good() const;
-
- virtual Ptr<AdjusterAdapter> clone() const;
-
-protected:
- virtual void detectImpl( const Mat& image, vector<KeyPoint>& keypoints, const Mat& mask=Mat() ) const;
-
- int thresh_;
- bool nonmax_;
- int init_thresh_, min_thresh_, max_thresh_;
-};
-
-
-/** An adjuster for StarFeatureDetector, this one adjusts the responseThreshold for now
- * TODO find a faster way to converge the parameters for Star - use CvStarDetectorParams
- */
-class CV_EXPORTS StarAdjuster: public AdjusterAdapter
-{
-public:
- StarAdjuster(double initial_thresh=30.0, double min_thresh=2., double max_thresh=200.);
-
- virtual void tooFew(int minv, int n_detected);
- virtual void tooMany(int maxv, int n_detected);
- virtual bool good() const;
-
- virtual Ptr<AdjusterAdapter> clone() const;
-
-protected:
- virtual void detectImpl( const Mat& image, vector<KeyPoint>& keypoints, const Mat& mask=Mat() ) const;
-
- double thresh_, init_thresh_, min_thresh_, max_thresh_;
-};
-
-class CV_EXPORTS SurfAdjuster: public AdjusterAdapter
-{
-public:
- SurfAdjuster( double initial_thresh=400.f, double min_thresh=2, double max_thresh=1000 );
-
- virtual void tooFew(int minv, int n_detected);
- virtual void tooMany(int maxv, int n_detected);
- virtual bool good() const;
-
- virtual Ptr<AdjusterAdapter> clone() const;
-
-protected:
- virtual void detectImpl( const Mat& image, vector<KeyPoint>& keypoints, const Mat& mask=Mat() ) const;
-
- double thresh_, init_thresh_, min_thresh_, max_thresh_;
-};
-
-CV_EXPORTS Mat windowedMatchingMask( const vector<KeyPoint>& keypoints1, const vector<KeyPoint>& keypoints2,
- float maxDeltaX, float maxDeltaY );
-
-
-
-/*
- * OpponentColorDescriptorExtractor
- *
- * Adapts a descriptor extractor to compute descriptors in Opponent Color Space
- * (refer to van de Sande et al., CGIV 2008 "Color Descriptors for Object Category Recognition").
- * Input RGB image is transformed in Opponent Color Space. Then unadapted descriptor extractor
- * (set in constructor) computes descriptors on each of the three channel and concatenate
- * them into a single color descriptor.
- */
-class CV_EXPORTS OpponentColorDescriptorExtractor : public DescriptorExtractor
-{
-public:
- OpponentColorDescriptorExtractor( const Ptr<DescriptorExtractor>& descriptorExtractor );
-
- virtual void read( const FileNode& );
- virtual void write( FileStorage& ) const;
-
- virtual int descriptorSize() const;
- virtual int descriptorType() const;
-
- virtual bool empty() const;
-
-protected:
- virtual void computeImpl( const Mat& image, vector<KeyPoint>& keypoints, Mat& descriptors ) const;
-
- Ptr<DescriptorExtractor> descriptorExtractor;
-};
-
-/*
- * BRIEF Descriptor
- */
-class CV_EXPORTS BriefDescriptorExtractor : public DescriptorExtractor
-{
-public:
- static const int PATCH_SIZE = 48;
- static const int KERNEL_SIZE = 9;
-
- // bytes is a length of descriptor in bytes. It can be equal 16, 32 or 64 bytes.
- BriefDescriptorExtractor( int bytes = 32 );
-
- virtual void read( const FileNode& );
- virtual void write( FileStorage& ) const;
-
- virtual int descriptorSize() const;
- virtual int descriptorType() const;
-
- /// @todo read and write for brief
-
- AlgorithmInfo* info() const;
-
-protected:
- virtual void computeImpl(const Mat& image, vector<KeyPoint>& keypoints, Mat& descriptors) const;
-
- typedef void(*PixelTestFn)(const Mat&, const vector<KeyPoint>&, Mat&);
-
- int bytes_;
- PixelTestFn test_fn_;
-};
-
-
-/****************************************************************************************\
-* Distance *
-\****************************************************************************************/
-
-template<typename T>
-struct CV_EXPORTS Accumulator
-{
- typedef T Type;
-};
-
-template<> struct Accumulator<unsigned char> { typedef float Type; };
-template<> struct Accumulator<unsigned short> { typedef float Type; };
-template<> struct Accumulator<char> { typedef float Type; };
-template<> struct Accumulator<short> { typedef float Type; };
-
-/*
- * Squared Euclidean distance functor
- */
-template<class T>
-struct CV_EXPORTS SL2
-{
- enum { normType = NORM_L2SQR };
- typedef T ValueType;
- typedef typename Accumulator<T>::Type ResultType;
-
- ResultType operator()( const T* a, const T* b, int size ) const
- {
- return normL2Sqr<ValueType, ResultType>(a, b, size);
- }
-};
-
-/*
- * Euclidean distance functor
- */
-template<class T>
-struct CV_EXPORTS L2
-{
- enum { normType = NORM_L2 };
- typedef T ValueType;
- typedef typename Accumulator<T>::Type ResultType;
-
- ResultType operator()( const T* a, const T* b, int size ) const
- {
- return (ResultType)sqrt((double)normL2Sqr<ValueType, ResultType>(a, b, size));
- }
-};
-
-/*
- * Manhattan distance (city block distance) functor
- */
-template<class T>
-struct CV_EXPORTS L1
-{
- enum { normType = NORM_L1 };
- typedef T ValueType;
- typedef typename Accumulator<T>::Type ResultType;
-
- ResultType operator()( const T* a, const T* b, int size ) const
- {
- return normL1<ValueType, ResultType>(a, b, size);
- }
-};
-
-/*
- * Hamming distance functor - counts the bit differences between two strings - useful for the Brief descriptor
- * bit count of A exclusive XOR'ed with B
- */
-struct CV_EXPORTS Hamming
-{
- enum { normType = NORM_HAMMING };
- typedef unsigned char ValueType;
- typedef int ResultType;
-
- /** this will count the bits in a ^ b
- */
- ResultType operator()( const unsigned char* a, const unsigned char* b, int size ) const
- {
- return normHamming(a, b, size);
- }
-};
-
-typedef Hamming HammingLUT;
-
-template<int cellsize> struct HammingMultilevel
-{
- enum { normType = NORM_HAMMING + (cellsize>1) };
- typedef unsigned char ValueType;
- typedef int ResultType;
-
- ResultType operator()( const unsigned char* a, const unsigned char* b, int size ) const
- {
- return normHamming(a, b, size, cellsize);
- }
-};
-
-/****************************************************************************************\
-* DMatch *
-\****************************************************************************************/
-/*
- * Struct for matching: query descriptor index, train descriptor index, train image index and distance between descriptors.
- */
-struct CV_EXPORTS_W_SIMPLE DMatch
-{
- CV_WRAP DMatch() : queryIdx(-1), trainIdx(-1), imgIdx(-1), distance(FLT_MAX) {}
- CV_WRAP DMatch( int _queryIdx, int _trainIdx, float _distance ) :
- queryIdx(_queryIdx), trainIdx(_trainIdx), imgIdx(-1), distance(_distance) {}
- CV_WRAP DMatch( int _queryIdx, int _trainIdx, int _imgIdx, float _distance ) :
- queryIdx(_queryIdx), trainIdx(_trainIdx), imgIdx(_imgIdx), distance(_distance) {}
-
- CV_PROP_RW int queryIdx; // query descriptor index
- CV_PROP_RW int trainIdx; // train descriptor index
- CV_PROP_RW int imgIdx; // train image index
-
- CV_PROP_RW float distance;
-
- // less is better
- bool operator<( const DMatch &m ) const
- {
- return distance < m.distance;
- }
-};
-
-/****************************************************************************************\
-* DescriptorMatcher *
-\****************************************************************************************/
-/*
- * Abstract base class for matching two sets of descriptors.
- */
-class CV_EXPORTS_W DescriptorMatcher : public Algorithm
-{
-public:
- virtual ~DescriptorMatcher();
-
- /*
- * Add descriptors to train descriptor collection.
- * descriptors Descriptors to add. Each descriptors[i] is a descriptors set from one image.
- */
- CV_WRAP virtual void add( const vector<Mat>& descriptors );
- /*
- * Get train descriptors collection.
- */
- CV_WRAP const vector<Mat>& getTrainDescriptors() const;
- /*
- * Clear train descriptors collection.
- */
- CV_WRAP virtual void clear();
-
- /*
- * Return true if there are not train descriptors in collection.
- */
- CV_WRAP virtual bool empty() const;
- /*
- * Return true if the matcher supports mask in match methods.
- */
- CV_WRAP virtual bool isMaskSupported() const = 0;
-
- /*
- * Train matcher (e.g. train flann index).
- * In all methods to match the method train() is run every time before matching.
- * Some descriptor matchers (e.g. BruteForceMatcher) have empty implementation
- * of this method, other matchers really train their inner structures
- * (e.g. FlannBasedMatcher trains flann::Index). So nonempty implementation
- * of train() should check the class object state and do traing/retraining
- * only if the state requires that (e.g. FlannBasedMatcher trains flann::Index
- * if it has not trained yet or if new descriptors have been added to the train
- * collection).
- */
- CV_WRAP virtual void train();
- /*
- * Group of methods to match descriptors from image pair.
- * Method train() is run in this methods.
- */
- // Find one best match for each query descriptor (if mask is empty).
- CV_WRAP void match( const Mat& queryDescriptors, const Mat& trainDescriptors,
- CV_OUT vector<DMatch>& matches, const Mat& mask=Mat() ) const;
- // Find k best matches for each query descriptor (in increasing order of distances).
- // compactResult is used when mask is not empty. If compactResult is false matches
- // vector will have the same size as queryDescriptors rows. If compactResult is true
- // matches vector will not contain matches for fully masked out query descriptors.
- CV_WRAP void knnMatch( const Mat& queryDescriptors, const Mat& trainDescriptors,
- CV_OUT vector<vector<DMatch> >& matches, int k,
- const Mat& mask=Mat(), bool compactResult=false ) const;
- // Find best matches for each query descriptor which have distance less than
- // maxDistance (in increasing order of distances).
- void radiusMatch( const Mat& queryDescriptors, const Mat& trainDescriptors,
- vector<vector<DMatch> >& matches, float maxDistance,
- const Mat& mask=Mat(), bool compactResult=false ) const;
- /*
- * Group of methods to match descriptors from one image to image set.
- * See description of similar methods for matching image pair above.
- */
- CV_WRAP void match( const Mat& queryDescriptors, CV_OUT vector<DMatch>& matches,
- const vector<Mat>& masks=vector<Mat>() );
- CV_WRAP void knnMatch( const Mat& queryDescriptors, CV_OUT vector<vector<DMatch> >& matches, int k,
- const vector<Mat>& masks=vector<Mat>(), bool compactResult=false );
- void radiusMatch( const Mat& queryDescriptors, vector<vector<DMatch> >& matches, float maxDistance,
- const vector<Mat>& masks=vector<Mat>(), bool compactResult=false );
-
- // Reads matcher object from a file node
- virtual void read( const FileNode& );
- // Writes matcher object to a file storage
- virtual void write( FileStorage& ) const;
-
- // Clone the matcher. If emptyTrainData is false the method create deep copy of the object, i.e. copies
- // both parameters and train data. If emptyTrainData is true the method create object copy with current parameters
- // but with empty train data.
- virtual Ptr<DescriptorMatcher> clone( bool emptyTrainData=false ) const = 0;
-
- CV_WRAP static Ptr<DescriptorMatcher> create( const string& descriptorMatcherType );
-protected:
- /*
- * Class to work with descriptors from several images as with one merged matrix.
- * It is used e.g. in FlannBasedMatcher.
- */
- class CV_EXPORTS DescriptorCollection
- {
- public:
- DescriptorCollection();
- DescriptorCollection( const DescriptorCollection& collection );
- virtual ~DescriptorCollection();
-
- // Vector of matrices "descriptors" will be merged to one matrix "mergedDescriptors" here.
- void set( const vector<Mat>& descriptors );
- virtual void clear();
-
- const Mat& getDescriptors() const;
- const Mat getDescriptor( int imgIdx, int localDescIdx ) const;
- const Mat getDescriptor( int globalDescIdx ) const;
- void getLocalIdx( int globalDescIdx, int& imgIdx, int& localDescIdx ) const;
-
- int size() const;
-
- protected:
- Mat mergedDescriptors;
- vector<int> startIdxs;
- };
-
- // In fact the matching is implemented only by the following two methods. These methods suppose
- // that the class object has been trained already. Public match methods call these methods
- // after calling train().
- virtual void knnMatchImpl( const Mat& queryDescriptors, vector<vector<DMatch> >& matches, int k,
- const vector<Mat>& masks=vector<Mat>(), bool compactResult=false ) = 0;
- virtual void radiusMatchImpl( const Mat& queryDescriptors, vector<vector<DMatch> >& matches, float maxDistance,
- const vector<Mat>& masks=vector<Mat>(), bool compactResult=false ) = 0;
-
- static bool isPossibleMatch( const Mat& mask, int queryIdx, int trainIdx );
- static bool isMaskedOut( const vector<Mat>& masks, int queryIdx );
-
- static Mat clone_op( Mat m ) { return m.clone(); }
- void checkMasks( const vector<Mat>& masks, int queryDescriptorsCount ) const;
-
- // Collection of descriptors from train images.
- vector<Mat> trainDescCollection;
-};
-
-/*
- * Brute-force descriptor matcher.
- *
- * For each descriptor in the first set, this matcher finds the closest
- * descriptor in the second set by trying each one.
- *
- * For efficiency, BruteForceMatcher is templated on the distance metric.
- * For float descriptors, a common choice would be cv::L2<float>.
- */
-class CV_EXPORTS_W BFMatcher : public DescriptorMatcher
-{
-public:
- CV_WRAP BFMatcher( int normType=NORM_L2, bool crossCheck=false );
- virtual ~BFMatcher() {}
-
- virtual bool isMaskSupported() const { return true; }
-
- virtual Ptr<DescriptorMatcher> clone( bool emptyTrainData=false ) const;
-
- AlgorithmInfo* info() const;
-protected:
- virtual void knnMatchImpl( const Mat& queryDescriptors, vector<vector<DMatch> >& matches, int k,
- const vector<Mat>& masks=vector<Mat>(), bool compactResult=false );
- virtual void radiusMatchImpl( const Mat& queryDescriptors, vector<vector<DMatch> >& matches, float maxDistance,
- const vector<Mat>& masks=vector<Mat>(), bool compactResult=false );
-
- int normType;
- bool crossCheck;
-};
-
-
-/*
- * Flann based matcher
- */
-class CV_EXPORTS_W FlannBasedMatcher : public DescriptorMatcher
-{
-public:
- CV_WRAP FlannBasedMatcher( const Ptr<flann::IndexParams>& indexParams=new flann::KDTreeIndexParams(),
- const Ptr<flann::SearchParams>& searchParams=new flann::SearchParams() );
-
- virtual void add( const vector<Mat>& descriptors );
- virtual void clear();
-
- // Reads matcher object from a file node
- virtual void read( const FileNode& );
- // Writes matcher object to a file storage
- virtual void write( FileStorage& ) const;
-
- virtual void train();
- virtual bool isMaskSupported() const;
-
- virtual Ptr<DescriptorMatcher> clone( bool emptyTrainData=false ) const;
-
- AlgorithmInfo* info() const;
-protected:
- static void convertToDMatches( const DescriptorCollection& descriptors,
- const Mat& indices, const Mat& distances,
- vector<vector<DMatch> >& matches );
-
- virtual void knnMatchImpl( const Mat& queryDescriptors, vector<vector<DMatch> >& matches, int k,
- const vector<Mat>& masks=vector<Mat>(), bool compactResult=false );
- virtual void radiusMatchImpl( const Mat& queryDescriptors, vector<vector<DMatch> >& matches, float maxDistance,
- const vector<Mat>& masks=vector<Mat>(), bool compactResult=false );
-
- Ptr<flann::IndexParams> indexParams;
- Ptr<flann::SearchParams> searchParams;
- Ptr<flann::Index> flannIndex;
-
- DescriptorCollection mergedDescriptors;
- int addedDescCount;
-};
-
-/****************************************************************************************\
-* GenericDescriptorMatcher *
-\****************************************************************************************/
-/*
- * Abstract interface for a keypoint descriptor and matcher
- */
-class GenericDescriptorMatcher;
-typedef GenericDescriptorMatcher GenericDescriptorMatch;
-
-class CV_EXPORTS GenericDescriptorMatcher
-{
-public:
- GenericDescriptorMatcher();
- virtual ~GenericDescriptorMatcher();
-
- /*
- * Add train collection: images and keypoints from them.
- * images A set of train images.
- * ketpoints Keypoint collection that have been detected on train images.
- *
- * Keypoints for which a descriptor cannot be computed are removed. Such keypoints
- * must be filtered in this method befor adding keypoints to train collection "trainPointCollection".
- * If inheritor class need perform such prefiltering the method add() must be overloaded.
- * In the other class methods programmer has access to the train keypoints by a constant link.
- */
- virtual void add( const vector<Mat>& images,
- vector<vector<KeyPoint> >& keypoints );
-
- const vector<Mat>& getTrainImages() const;
- const vector<vector<KeyPoint> >& getTrainKeypoints() const;
-
- /*
- * Clear images and keypoints storing in train collection.
- */
- virtual void clear();
- /*
- * Returns true if matcher supports mask to match descriptors.
- */
- virtual bool isMaskSupported() = 0;
- /*
- * Train some inner structures (e.g. flann index or decision trees).
- * train() methods is run every time in matching methods. So the method implementation
- * should has a check whether these inner structures need be trained/retrained or not.
- */
- virtual void train();
-
- /*
- * Classifies query keypoints.
- * queryImage The query image
- * queryKeypoints Keypoints from the query image
- * trainImage The train image
- * trainKeypoints Keypoints from the train image
- */
- // Classify keypoints from query image under one train image.
- void classify( const Mat& queryImage, vector<KeyPoint>& queryKeypoints,
- const Mat& trainImage, vector<KeyPoint>& trainKeypoints ) const;
- // Classify keypoints from query image under train image collection.
- void classify( const Mat& queryImage, vector<KeyPoint>& queryKeypoints );
-
- /*
- * Group of methods to match keypoints from image pair.
- * Keypoints for which a descriptor cannot be computed are removed.
- * train() method is called here.
- */
- // Find one best match for each query descriptor (if mask is empty).
- void match( const Mat& queryImage, vector<KeyPoint>& queryKeypoints,
- const Mat& trainImage, vector<KeyPoint>& trainKeypoints,
- vector<DMatch>& matches, const Mat& mask=Mat() ) const;
- // Find k best matches for each query keypoint (in increasing order of distances).
- // compactResult is used when mask is not empty. If compactResult is false matches
- // vector will have the same size as queryDescriptors rows.
- // If compactResult is true matches vector will not contain matches for fully masked out query descriptors.
- void knnMatch( const Mat& queryImage, vector<KeyPoint>& queryKeypoints,
- const Mat& trainImage, vector<KeyPoint>& trainKeypoints,
- vector<vector<DMatch> >& matches, int k,
- const Mat& mask=Mat(), bool compactResult=false ) const;
- // Find best matches for each query descriptor which have distance less than maxDistance (in increasing order of distances).
- void radiusMatch( const Mat& queryImage, vector<KeyPoint>& queryKeypoints,
- const Mat& trainImage, vector<KeyPoint>& trainKeypoints,
- vector<vector<DMatch> >& matches, float maxDistance,
- const Mat& mask=Mat(), bool compactResult=false ) const;
- /*
- * Group of methods to match keypoints from one image to image set.
- * See description of similar methods for matching image pair above.
- */
- void match( const Mat& queryImage, vector<KeyPoint>& queryKeypoints,
- vector<DMatch>& matches, const vector<Mat>& masks=vector<Mat>() );
- void knnMatch( const Mat& queryImage, vector<KeyPoint>& queryKeypoints,
- vector<vector<DMatch> >& matches, int k,
- const vector<Mat>& masks=vector<Mat>(), bool compactResult=false );
- void radiusMatch( const Mat& queryImage, vector<KeyPoint>& queryKeypoints,
- vector<vector<DMatch> >& matches, float maxDistance,
- const vector<Mat>& masks=vector<Mat>(), bool compactResult=false );
-
- // Reads matcher object from a file node
- virtual void read( const FileNode& fn );
- // Writes matcher object to a file storage
- virtual void write( FileStorage& fs ) const;
-
- // Return true if matching object is empty (e.g. feature detector or descriptor matcher are empty)
- virtual bool empty() const;
-
- // Clone the matcher. If emptyTrainData is false the method create deep copy of the object, i.e. copies
- // both parameters and train data. If emptyTrainData is true the method create object copy with current parameters
- // but with empty train data.
- virtual Ptr<GenericDescriptorMatcher> clone( bool emptyTrainData=false ) const = 0;
-
- static Ptr<GenericDescriptorMatcher> create( const string& genericDescritptorMatcherType,
- const string &paramsFilename=string() );
-
-protected:
- // In fact the matching is implemented only by the following two methods. These methods suppose
- // that the class object has been trained already. Public match methods call these methods
- // after calling train().
- virtual void knnMatchImpl( const Mat& queryImage, vector<KeyPoint>& queryKeypoints,
- vector<vector<DMatch> >& matches, int k,
- const vector<Mat>& masks, bool compactResult ) = 0;
- virtual void radiusMatchImpl( const Mat& queryImage, vector<KeyPoint>& queryKeypoints,
- vector<vector<DMatch> >& matches, float maxDistance,
- const vector<Mat>& masks, bool compactResult ) = 0;
- /*
- * A storage for sets of keypoints together with corresponding images and class IDs
- */
- class CV_EXPORTS KeyPointCollection
- {
- public:
- KeyPointCollection();
- KeyPointCollection( const KeyPointCollection& collection );
- void add( const vector<Mat>& images, const vector<vector<KeyPoint> >& keypoints );
- void clear();
-
- // Returns the total number of keypoints in the collection
- size_t keypointCount() const;
- size_t imageCount() const;
-
- const vector<vector<KeyPoint> >& getKeypoints() const;
- const vector<KeyPoint>& getKeypoints( int imgIdx ) const;
- const KeyPoint& getKeyPoint( int imgIdx, int localPointIdx ) const;
- const KeyPoint& getKeyPoint( int globalPointIdx ) const;
- void getLocalIdx( int globalPointIdx, int& imgIdx, int& localPointIdx ) const;
-
- const vector<Mat>& getImages() const;
- const Mat& getImage( int imgIdx ) const;
-
- protected:
- int pointCount;
-
- vector<Mat> images;
- vector<vector<KeyPoint> > keypoints;
- // global indices of the first points in each image, startIndices.size() = keypoints.size()
- vector<int> startIndices;
-
- private:
- static Mat clone_op( Mat m ) { return m.clone(); }
- };
-
- KeyPointCollection trainPointCollection;
-};
-
-
-/****************************************************************************************\
-* VectorDescriptorMatcher *
-\****************************************************************************************/
-
-/*
- * A class used for matching descriptors that can be described as vectors in a finite-dimensional space
- */
-class VectorDescriptorMatcher;
-typedef VectorDescriptorMatcher VectorDescriptorMatch;
-
-class CV_EXPORTS VectorDescriptorMatcher : public GenericDescriptorMatcher
-{
-public:
- VectorDescriptorMatcher( const Ptr<DescriptorExtractor>& extractor, const Ptr<DescriptorMatcher>& matcher );
- virtual ~VectorDescriptorMatcher();
-
- virtual void add( const vector<Mat>& imgCollection,
- vector<vector<KeyPoint> >& pointCollection );
-
- virtual void clear();
-
- virtual void train();
-
- virtual bool isMaskSupported();
-
- virtual void read( const FileNode& fn );
- virtual void write( FileStorage& fs ) const;
- virtual bool empty() const;
-
- virtual Ptr<GenericDescriptorMatcher> clone( bool emptyTrainData=false ) const;
-
-protected:
- virtual void knnMatchImpl( const Mat& queryImage, vector<KeyPoint>& queryKeypoints,
- vector<vector<DMatch> >& matches, int k,
- const vector<Mat>& masks, bool compactResult );
- virtual void radiusMatchImpl( const Mat& queryImage, vector<KeyPoint>& queryKeypoints,
- vector<vector<DMatch> >& matches, float maxDistance,
- const vector<Mat>& masks, bool compactResult );
-
- Ptr<DescriptorExtractor> extractor;
- Ptr<DescriptorMatcher> matcher;
-};
-
-/****************************************************************************************\
-* Drawing functions *
-\****************************************************************************************/
-struct CV_EXPORTS DrawMatchesFlags
-{
- enum{ DEFAULT = 0, // Output image matrix will be created (Mat::create),
- // i.e. existing memory of output image may be reused.
- // Two source image, matches and single keypoints will be drawn.
- // For each keypoint only the center point will be drawn (without
- // the circle around keypoint with keypoint size and orientation).
- DRAW_OVER_OUTIMG = 1, // Output image matrix will not be created (Mat::create).
- // Matches will be drawn on existing content of output image.
- NOT_DRAW_SINGLE_POINTS = 2, // Single keypoints will not be drawn.
- DRAW_RICH_KEYPOINTS = 4 // For each keypoint the circle around keypoint with keypoint size and
- // orientation will be drawn.
- };
-};
-
-// Draw keypoints.
-CV_EXPORTS_W void drawKeypoints( const Mat& image, const vector<KeyPoint>& keypoints, CV_OUT Mat& outImage,
- const Scalar& color=Scalar::all(-1), int flags=DrawMatchesFlags::DEFAULT );
-
-// Draws matches of keypints from two images on output image.
-CV_EXPORTS void drawMatches( const Mat& img1, const vector<KeyPoint>& keypoints1,
- const Mat& img2, const vector<KeyPoint>& keypoints2,
- const vector<DMatch>& matches1to2, Mat& outImg,
- const Scalar& matchColor=Scalar::all(-1), const Scalar& singlePointColor=Scalar::all(-1),
- const vector<char>& matchesMask=vector<char>(), int flags=DrawMatchesFlags::DEFAULT );
-
-CV_EXPORTS void drawMatches( const Mat& img1, const vector<KeyPoint>& keypoints1,
- const Mat& img2, const vector<KeyPoint>& keypoints2,
- const vector<vector<DMatch> >& matches1to2, Mat& outImg,
- const Scalar& matchColor=Scalar::all(-1), const Scalar& singlePointColor=Scalar::all(-1),
- const vector<vector<char> >& matchesMask=vector<vector<char> >(), int flags=DrawMatchesFlags::DEFAULT );
-
-/****************************************************************************************\
-* Functions to evaluate the feature detectors and [generic] descriptor extractors *
-\****************************************************************************************/
-
-CV_EXPORTS void evaluateFeatureDetector( const Mat& img1, const Mat& img2, const Mat& H1to2,
- vector<KeyPoint>* keypoints1, vector<KeyPoint>* keypoints2,
- float& repeatability, int& correspCount,
- const Ptr<FeatureDetector>& fdetector=Ptr<FeatureDetector>() );
-
-CV_EXPORTS void computeRecallPrecisionCurve( const vector<vector<DMatch> >& matches1to2,
- const vector<vector<uchar> >& correctMatches1to2Mask,
- vector<Point2f>& recallPrecisionCurve );
-
-CV_EXPORTS float getRecall( const vector<Point2f>& recallPrecisionCurve, float l_precision );
-CV_EXPORTS int getNearestPoint( const vector<Point2f>& recallPrecisionCurve, float l_precision );
-
-CV_EXPORTS void evaluateGenericDescriptorMatcher( const Mat& img1, const Mat& img2, const Mat& H1to2,
- vector<KeyPoint>& keypoints1, vector<KeyPoint>& keypoints2,
- vector<vector<DMatch> >* matches1to2, vector<vector<uchar> >* correctMatches1to2Mask,
- vector<Point2f>& recallPrecisionCurve,
- const Ptr<GenericDescriptorMatcher>& dmatch=Ptr<GenericDescriptorMatcher>() );
-
-
-/****************************************************************************************\
-* Bag of visual words *
-\****************************************************************************************/
-/*
- * Abstract base class for training of a 'bag of visual words' vocabulary from a set of descriptors
- */
-class CV_EXPORTS_W BOWTrainer
-{
-public:
- BOWTrainer();
- virtual ~BOWTrainer();
-
- CV_WRAP void add( const Mat& descriptors );
- CV_WRAP const vector<Mat>& getDescriptors() const;
- CV_WRAP int descripotorsCount() const;
-
- CV_WRAP virtual void clear();
-
- /*
- * Train visual words vocabulary, that is cluster training descriptors and
- * compute cluster centers.
- * Returns cluster centers.
- *
- * descriptors Training descriptors computed on images keypoints.
- */
- CV_WRAP virtual Mat cluster() const = 0;
- CV_WRAP virtual Mat cluster( const Mat& descriptors ) const = 0;
-
-protected:
- vector<Mat> descriptors;
- int size;
-};
-
-/*
- * This is BOWTrainer using cv::kmeans to get vocabulary.
- */
-class CV_EXPORTS_W BOWKMeansTrainer : public BOWTrainer
-{
-public:
- CV_WRAP BOWKMeansTrainer( int clusterCount, const TermCriteria& termcrit=TermCriteria(),
- int attempts=3, int flags=KMEANS_PP_CENTERS );
- virtual ~BOWKMeansTrainer();
-
- // Returns trained vocabulary (i.e. cluster centers).
- CV_WRAP virtual Mat cluster() const;
- CV_WRAP virtual Mat cluster( const Mat& descriptors ) const;
-
-protected:
-
- int clusterCount;
- TermCriteria termcrit;
- int attempts;
- int flags;
-};
-
-/*
- * Class to compute image descriptor using bag of visual words.
- */
-class CV_EXPORTS_W BOWImgDescriptorExtractor
-{
-public:
- CV_WRAP BOWImgDescriptorExtractor( const Ptr<DescriptorExtractor>& dextractor,
- const Ptr<DescriptorMatcher>& dmatcher );
- virtual ~BOWImgDescriptorExtractor();
-
- CV_WRAP void setVocabulary( const Mat& vocabulary );
- CV_WRAP const Mat& getVocabulary() const;
- void compute( const Mat& image, vector<KeyPoint>& keypoints, Mat& imgDescriptor,
- vector<vector<int> >* pointIdxsOfClusters=0, Mat* descriptors=0 );
- // compute() is not constant because DescriptorMatcher::match is not constant
-
- CV_WRAP_AS(compute) void compute2( const Mat& image, vector<KeyPoint>& keypoints, CV_OUT Mat& imgDescriptor )
- { compute(image,keypoints,imgDescriptor); }
-
- CV_WRAP int descriptorSize() const;
- CV_WRAP int descriptorType() const;
-
-protected:
- Mat vocabulary;
- Ptr<DescriptorExtractor> dextractor;
- Ptr<DescriptorMatcher> dmatcher;
-};
-
-} /* namespace cv */
-
-#endif /* __cplusplus */
-
-#endif
-
-/* End of file. */