summaryrefslogtreecommitdiff
path: root/2.3-1/thirdparty/includes/OpenCV/opencv2/legacy/legacy.hpp
diff options
context:
space:
mode:
Diffstat (limited to '2.3-1/thirdparty/includes/OpenCV/opencv2/legacy/legacy.hpp')
-rw-r--r--2.3-1/thirdparty/includes/OpenCV/opencv2/legacy/legacy.hpp3436
1 files changed, 3436 insertions, 0 deletions
diff --git a/2.3-1/thirdparty/includes/OpenCV/opencv2/legacy/legacy.hpp b/2.3-1/thirdparty/includes/OpenCV/opencv2/legacy/legacy.hpp
new file mode 100644
index 00000000..96da25c9
--- /dev/null
+++ b/2.3-1/thirdparty/includes/OpenCV/opencv2/legacy/legacy.hpp
@@ -0,0 +1,3436 @@
+/*M///////////////////////////////////////////////////////////////////////////////////////
+//
+// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
+//
+// By downloading, copying, installing or using the software you agree to this license.
+// If you do not agree to this license, do not download, install,
+// copy or use the software.
+//
+//
+// Intel License Agreement
+// For Open Source Computer Vision Library
+//
+// Copyright (C) 2000, Intel Corporation, all rights reserved.
+// Third party copyrights are property of their respective owners.
+//
+// Redistribution and use in source and binary forms, with or without modification,
+// are permitted provided that the following conditions are met:
+//
+// * Redistribution's of source code must retain the above copyright notice,
+// this list of conditions and the following disclaimer.
+//
+// * Redistribution's in binary form must reproduce the above copyright notice,
+// this list of conditions and the following disclaimer in the documentation
+// and/or other materials provided with the distribution.
+//
+// * The name of Intel Corporation may not be used to endorse or promote products
+// derived from this software without specific prior written permission.
+//
+// This software is provided by the copyright holders and contributors "as is" and
+// any express or implied warranties, including, but not limited to, the implied
+// warranties of merchantability and fitness for a particular purpose are disclaimed.
+// In no event shall the Intel Corporation or contributors be liable for any direct,
+// indirect, incidental, special, exemplary, or consequential damages
+// (including, but not limited to, procurement of substitute goods or services;
+// loss of use, data, or profits; or business interruption) however caused
+// and on any theory of liability, whether in contract, strict liability,
+// or tort (including negligence or otherwise) arising in any way out of
+// the use of this software, even if advised of the possibility of such damage.
+//
+//M*/
+
+#ifndef __OPENCV_LEGACY_HPP__
+#define __OPENCV_LEGACY_HPP__
+
+#include "opencv2/imgproc/imgproc.hpp"
+#include "opencv2/imgproc/imgproc_c.h"
+#include "opencv2/features2d/features2d.hpp"
+#include "opencv2/calib3d/calib3d.hpp"
+#include "opencv2/ml/ml.hpp"
+
+#ifdef __cplusplus
+extern "C" {
+#endif
+
+CVAPI(CvSeq*) cvSegmentImage( const CvArr* srcarr, CvArr* dstarr,
+ double canny_threshold,
+ double ffill_threshold,
+ CvMemStorage* storage );
+
+/****************************************************************************************\
+* Eigen objects *
+\****************************************************************************************/
+
+typedef int (CV_CDECL * CvCallback)(int index, void* buffer, void* user_data);
+typedef union
+{
+ CvCallback callback;
+ void* data;
+}
+CvInput;
+
+#define CV_EIGOBJ_NO_CALLBACK 0
+#define CV_EIGOBJ_INPUT_CALLBACK 1
+#define CV_EIGOBJ_OUTPUT_CALLBACK 2
+#define CV_EIGOBJ_BOTH_CALLBACK 3
+
+/* Calculates covariation matrix of a set of arrays */
+CVAPI(void) cvCalcCovarMatrixEx( int nObjects, void* input, int ioFlags,
+ int ioBufSize, uchar* buffer, void* userData,
+ IplImage* avg, float* covarMatrix );
+
+/* Calculates eigen values and vectors of covariation matrix of a set of
+ arrays */
+CVAPI(void) cvCalcEigenObjects( int nObjects, void* input, void* output,
+ int ioFlags, int ioBufSize, void* userData,
+ CvTermCriteria* calcLimit, IplImage* avg,
+ float* eigVals );
+
+/* Calculates dot product (obj - avg) * eigObj (i.e. projects image to eigen vector) */
+CVAPI(double) cvCalcDecompCoeff( IplImage* obj, IplImage* eigObj, IplImage* avg );
+
+/* Projects image to eigen space (finds all decomposion coefficients */
+CVAPI(void) cvEigenDecomposite( IplImage* obj, int nEigObjs, void* eigInput,
+ int ioFlags, void* userData, IplImage* avg,
+ float* coeffs );
+
+/* Projects original objects used to calculate eigen space basis to that space */
+CVAPI(void) cvEigenProjection( void* eigInput, int nEigObjs, int ioFlags,
+ void* userData, float* coeffs, IplImage* avg,
+ IplImage* proj );
+
+/****************************************************************************************\
+* 1D/2D HMM *
+\****************************************************************************************/
+
+typedef struct CvImgObsInfo
+{
+ int obs_x;
+ int obs_y;
+ int obs_size;
+ float* obs;//consequtive observations
+
+ int* state;/* arr of pairs superstate/state to which observation belong */
+ int* mix; /* number of mixture to which observation belong */
+
+} CvImgObsInfo;/*struct for 1 image*/
+
+typedef CvImgObsInfo Cv1DObsInfo;
+
+typedef struct CvEHMMState
+{
+ int num_mix; /*number of mixtures in this state*/
+ float* mu; /*mean vectors corresponding to each mixture*/
+ float* inv_var; /* square root of inversed variances corresp. to each mixture*/
+ float* log_var_val; /* sum of 0.5 (LN2PI + ln(variance[i]) ) for i=1,n */
+ float* weight; /*array of mixture weights. Summ of all weights in state is 1. */
+
+} CvEHMMState;
+
+typedef struct CvEHMM
+{
+ int level; /* 0 - lowest(i.e its states are real states), ..... */
+ int num_states; /* number of HMM states */
+ float* transP;/*transition probab. matrices for states */
+ float** obsProb; /* if level == 0 - array of brob matrices corresponding to hmm
+ if level == 1 - martix of matrices */
+ union
+ {
+ CvEHMMState* state; /* if level == 0 points to real states array,
+ if not - points to embedded hmms */
+ struct CvEHMM* ehmm; /* pointer to an embedded model or NULL, if it is a leaf */
+ } u;
+
+} CvEHMM;
+
+/*CVAPI(int) icvCreate1DHMM( CvEHMM** this_hmm,
+ int state_number, int* num_mix, int obs_size );
+
+CVAPI(int) icvRelease1DHMM( CvEHMM** phmm );
+
+CVAPI(int) icvUniform1DSegm( Cv1DObsInfo* obs_info, CvEHMM* hmm );
+
+CVAPI(int) icvInit1DMixSegm( Cv1DObsInfo** obs_info_array, int num_img, CvEHMM* hmm);
+
+CVAPI(int) icvEstimate1DHMMStateParams( CvImgObsInfo** obs_info_array, int num_img, CvEHMM* hmm);
+
+CVAPI(int) icvEstimate1DObsProb( CvImgObsInfo* obs_info, CvEHMM* hmm );
+
+CVAPI(int) icvEstimate1DTransProb( Cv1DObsInfo** obs_info_array,
+ int num_seq,
+ CvEHMM* hmm );
+
+CVAPI(float) icvViterbi( Cv1DObsInfo* obs_info, CvEHMM* hmm);
+
+CVAPI(int) icv1DMixSegmL2( CvImgObsInfo** obs_info_array, int num_img, CvEHMM* hmm );*/
+
+/*********************************** Embedded HMMs *************************************/
+
+/* Creates 2D HMM */
+CVAPI(CvEHMM*) cvCreate2DHMM( int* stateNumber, int* numMix, int obsSize );
+
+/* Releases HMM */
+CVAPI(void) cvRelease2DHMM( CvEHMM** hmm );
+
+#define CV_COUNT_OBS(roi, win, delta, numObs ) \
+{ \
+ (numObs)->width =((roi)->width -(win)->width +(delta)->width)/(delta)->width; \
+ (numObs)->height =((roi)->height -(win)->height +(delta)->height)/(delta)->height;\
+}
+
+/* Creates storage for observation vectors */
+CVAPI(CvImgObsInfo*) cvCreateObsInfo( CvSize numObs, int obsSize );
+
+/* Releases storage for observation vectors */
+CVAPI(void) cvReleaseObsInfo( CvImgObsInfo** obs_info );
+
+
+/* The function takes an image on input and and returns the sequnce of observations
+ to be used with an embedded HMM; Each observation is top-left block of DCT
+ coefficient matrix */
+CVAPI(void) cvImgToObs_DCT( const CvArr* arr, float* obs, CvSize dctSize,
+ CvSize obsSize, CvSize delta );
+
+
+/* Uniformly segments all observation vectors extracted from image */
+CVAPI(void) cvUniformImgSegm( CvImgObsInfo* obs_info, CvEHMM* ehmm );
+
+/* Does mixture segmentation of the states of embedded HMM */
+CVAPI(void) cvInitMixSegm( CvImgObsInfo** obs_info_array,
+ int num_img, CvEHMM* hmm );
+
+/* Function calculates means, variances, weights of every Gaussian mixture
+ of every low-level state of embedded HMM */
+CVAPI(void) cvEstimateHMMStateParams( CvImgObsInfo** obs_info_array,
+ int num_img, CvEHMM* hmm );
+
+/* Function computes transition probability matrices of embedded HMM
+ given observations segmentation */
+CVAPI(void) cvEstimateTransProb( CvImgObsInfo** obs_info_array,
+ int num_img, CvEHMM* hmm );
+
+/* Function computes probabilities of appearing observations at any state
+ (i.e. computes P(obs|state) for every pair(obs,state)) */
+CVAPI(void) cvEstimateObsProb( CvImgObsInfo* obs_info,
+ CvEHMM* hmm );
+
+/* Runs Viterbi algorithm for embedded HMM */
+CVAPI(float) cvEViterbi( CvImgObsInfo* obs_info, CvEHMM* hmm );
+
+
+/* Function clusters observation vectors from several images
+ given observations segmentation.
+ Euclidean distance used for clustering vectors.
+ Centers of clusters are given means of every mixture */
+CVAPI(void) cvMixSegmL2( CvImgObsInfo** obs_info_array,
+ int num_img, CvEHMM* hmm );
+
+/****************************************************************************************\
+* A few functions from old stereo gesture recognition demosions *
+\****************************************************************************************/
+
+/* Creates hand mask image given several points on the hand */
+CVAPI(void) cvCreateHandMask( CvSeq* hand_points,
+ IplImage *img_mask, CvRect *roi);
+
+/* Finds hand region in range image data */
+CVAPI(void) cvFindHandRegion (CvPoint3D32f* points, int count,
+ CvSeq* indexs,
+ float* line, CvSize2D32f size, int flag,
+ CvPoint3D32f* center,
+ CvMemStorage* storage, CvSeq **numbers);
+
+/* Finds hand region in range image data (advanced version) */
+CVAPI(void) cvFindHandRegionA( CvPoint3D32f* points, int count,
+ CvSeq* indexs,
+ float* line, CvSize2D32f size, int jc,
+ CvPoint3D32f* center,
+ CvMemStorage* storage, CvSeq **numbers);
+
+/* Calculates the cooficients of the homography matrix */
+CVAPI(void) cvCalcImageHomography( float* line, CvPoint3D32f* center,
+ float* intrinsic, float* homography );
+
+/****************************************************************************************\
+* More operations on sequences *
+\****************************************************************************************/
+
+/*****************************************************************************************/
+
+#define CV_CURRENT_INT( reader ) (*((int *)(reader).ptr))
+#define CV_PREV_INT( reader ) (*((int *)(reader).prev_elem))
+
+#define CV_GRAPH_WEIGHTED_VERTEX_FIELDS() CV_GRAPH_VERTEX_FIELDS()\
+ float weight;
+
+#define CV_GRAPH_WEIGHTED_EDGE_FIELDS() CV_GRAPH_EDGE_FIELDS()
+
+typedef struct CvGraphWeightedVtx
+{
+ CV_GRAPH_WEIGHTED_VERTEX_FIELDS()
+} CvGraphWeightedVtx;
+
+typedef struct CvGraphWeightedEdge
+{
+ CV_GRAPH_WEIGHTED_EDGE_FIELDS()
+} CvGraphWeightedEdge;
+
+typedef enum CvGraphWeightType
+{
+ CV_NOT_WEIGHTED,
+ CV_WEIGHTED_VTX,
+ CV_WEIGHTED_EDGE,
+ CV_WEIGHTED_ALL
+} CvGraphWeightType;
+
+
+/* Calculates histogram of a contour */
+CVAPI(void) cvCalcPGH( const CvSeq* contour, CvHistogram* hist );
+
+#define CV_DOMINANT_IPAN 1
+
+/* Finds high-curvature points of the contour */
+CVAPI(CvSeq*) cvFindDominantPoints( CvSeq* contour, CvMemStorage* storage,
+ int method CV_DEFAULT(CV_DOMINANT_IPAN),
+ double parameter1 CV_DEFAULT(0),
+ double parameter2 CV_DEFAULT(0),
+ double parameter3 CV_DEFAULT(0),
+ double parameter4 CV_DEFAULT(0));
+
+/*****************************************************************************************/
+
+
+/*******************************Stereo correspondence*************************************/
+
+typedef struct CvCliqueFinder
+{
+ CvGraph* graph;
+ int** adj_matr;
+ int N; //graph size
+
+ // stacks, counters etc/
+ int k; //stack size
+ int* current_comp;
+ int** All;
+
+ int* ne;
+ int* ce;
+ int* fixp; //node with minimal disconnections
+ int* nod;
+ int* s; //for selected candidate
+ int status;
+ int best_score;
+ int weighted;
+ int weighted_edges;
+ float best_weight;
+ float* edge_weights;
+ float* vertex_weights;
+ float* cur_weight;
+ float* cand_weight;
+
+} CvCliqueFinder;
+
+#define CLIQUE_TIME_OFF 2
+#define CLIQUE_FOUND 1
+#define CLIQUE_END 0
+
+/*CVAPI(void) cvStartFindCliques( CvGraph* graph, CvCliqueFinder* finder, int reverse,
+ int weighted CV_DEFAULT(0), int weighted_edges CV_DEFAULT(0));
+CVAPI(int) cvFindNextMaximalClique( CvCliqueFinder* finder, int* clock_rest CV_DEFAULT(0) );
+CVAPI(void) cvEndFindCliques( CvCliqueFinder* finder );
+
+CVAPI(void) cvBronKerbosch( CvGraph* graph );*/
+
+
+/*F///////////////////////////////////////////////////////////////////////////////////////
+//
+// Name: cvSubgraphWeight
+// Purpose: finds weight of subgraph in a graph
+// Context:
+// Parameters:
+// graph - input graph.
+// subgraph - sequence of pairwise different ints. These are indices of vertices of subgraph.
+// weight_type - describes the way we measure weight.
+// one of the following:
+// CV_NOT_WEIGHTED - weight of a clique is simply its size
+// CV_WEIGHTED_VTX - weight of a clique is the sum of weights of its vertices
+// CV_WEIGHTED_EDGE - the same but edges
+// CV_WEIGHTED_ALL - the same but both edges and vertices
+// weight_vtx - optional vector of floats, with size = graph->total.
+// If weight_type is either CV_WEIGHTED_VTX or CV_WEIGHTED_ALL
+// weights of vertices must be provided. If weight_vtx not zero
+// these weights considered to be here, otherwise function assumes
+// that vertices of graph are inherited from CvGraphWeightedVtx.
+// weight_edge - optional matrix of floats, of width and height = graph->total.
+// If weight_type is either CV_WEIGHTED_EDGE or CV_WEIGHTED_ALL
+// weights of edges ought to be supplied. If weight_edge is not zero
+// function finds them here, otherwise function expects
+// edges of graph to be inherited from CvGraphWeightedEdge.
+// If this parameter is not zero structure of the graph is determined from matrix
+// rather than from CvGraphEdge's. In particular, elements corresponding to
+// absent edges should be zero.
+// Returns:
+// weight of subgraph.
+// Notes:
+//F*/
+/*CVAPI(float) cvSubgraphWeight( CvGraph *graph, CvSeq *subgraph,
+ CvGraphWeightType weight_type CV_DEFAULT(CV_NOT_WEIGHTED),
+ CvVect32f weight_vtx CV_DEFAULT(0),
+ CvMatr32f weight_edge CV_DEFAULT(0) );*/
+
+
+/*F///////////////////////////////////////////////////////////////////////////////////////
+//
+// Name: cvFindCliqueEx
+// Purpose: tries to find clique with maximum possible weight in a graph
+// Context:
+// Parameters:
+// graph - input graph.
+// storage - memory storage to be used by the result.
+// is_complementary - optional flag showing whether function should seek for clique
+// in complementary graph.
+// weight_type - describes our notion about weight.
+// one of the following:
+// CV_NOT_WEIGHTED - weight of a clique is simply its size
+// CV_WEIGHTED_VTX - weight of a clique is the sum of weights of its vertices
+// CV_WEIGHTED_EDGE - the same but edges
+// CV_WEIGHTED_ALL - the same but both edges and vertices
+// weight_vtx - optional vector of floats, with size = graph->total.
+// If weight_type is either CV_WEIGHTED_VTX or CV_WEIGHTED_ALL
+// weights of vertices must be provided. If weight_vtx not zero
+// these weights considered to be here, otherwise function assumes
+// that vertices of graph are inherited from CvGraphWeightedVtx.
+// weight_edge - optional matrix of floats, of width and height = graph->total.
+// If weight_type is either CV_WEIGHTED_EDGE or CV_WEIGHTED_ALL
+// weights of edges ought to be supplied. If weight_edge is not zero
+// function finds them here, otherwise function expects
+// edges of graph to be inherited from CvGraphWeightedEdge.
+// Note that in case of CV_WEIGHTED_EDGE or CV_WEIGHTED_ALL
+// nonzero is_complementary implies nonzero weight_edge.
+// start_clique - optional sequence of pairwise different ints. They are indices of
+// vertices that shall be present in the output clique.
+// subgraph_of_ban - optional sequence of (maybe equal) ints. They are indices of
+// vertices that shall not be present in the output clique.
+// clique_weight_ptr - optional output parameter. Weight of found clique stored here.
+// num_generations - optional number of generations in evolutionary part of algorithm,
+// zero forces to return first found clique.
+// quality - optional parameter determining degree of required quality/speed tradeoff.
+// Must be in the range from 0 to 9.
+// 0 is fast and dirty, 9 is slow but hopefully yields good clique.
+// Returns:
+// sequence of pairwise different ints.
+// These are indices of vertices that form found clique.
+// Notes:
+// in cases of CV_WEIGHTED_EDGE and CV_WEIGHTED_ALL weights should be nonnegative.
+// start_clique has a priority over subgraph_of_ban.
+//F*/
+/*CVAPI(CvSeq*) cvFindCliqueEx( CvGraph *graph, CvMemStorage *storage,
+ int is_complementary CV_DEFAULT(0),
+ CvGraphWeightType weight_type CV_DEFAULT(CV_NOT_WEIGHTED),
+ CvVect32f weight_vtx CV_DEFAULT(0),
+ CvMatr32f weight_edge CV_DEFAULT(0),
+ CvSeq *start_clique CV_DEFAULT(0),
+ CvSeq *subgraph_of_ban CV_DEFAULT(0),
+ float *clique_weight_ptr CV_DEFAULT(0),
+ int num_generations CV_DEFAULT(3),
+ int quality CV_DEFAULT(2) );*/
+
+
+#define CV_UNDEF_SC_PARAM 12345 //default value of parameters
+
+#define CV_IDP_BIRCHFIELD_PARAM1 25
+#define CV_IDP_BIRCHFIELD_PARAM2 5
+#define CV_IDP_BIRCHFIELD_PARAM3 12
+#define CV_IDP_BIRCHFIELD_PARAM4 15
+#define CV_IDP_BIRCHFIELD_PARAM5 25
+
+
+#define CV_DISPARITY_BIRCHFIELD 0
+
+
+/*F///////////////////////////////////////////////////////////////////////////
+//
+// Name: cvFindStereoCorrespondence
+// Purpose: find stereo correspondence on stereo-pair
+// Context:
+// Parameters:
+// leftImage - left image of stereo-pair (format 8uC1).
+// rightImage - right image of stereo-pair (format 8uC1).
+// mode - mode of correspondence retrieval (now CV_DISPARITY_BIRCHFIELD only)
+// dispImage - destination disparity image
+// maxDisparity - maximal disparity
+// param1, param2, param3, param4, param5 - parameters of algorithm
+// Returns:
+// Notes:
+// Images must be rectified.
+// All images must have format 8uC1.
+//F*/
+CVAPI(void)
+cvFindStereoCorrespondence(
+ const CvArr* leftImage, const CvArr* rightImage,
+ int mode,
+ CvArr* dispImage,
+ int maxDisparity,
+ double param1 CV_DEFAULT(CV_UNDEF_SC_PARAM),
+ double param2 CV_DEFAULT(CV_UNDEF_SC_PARAM),
+ double param3 CV_DEFAULT(CV_UNDEF_SC_PARAM),
+ double param4 CV_DEFAULT(CV_UNDEF_SC_PARAM),
+ double param5 CV_DEFAULT(CV_UNDEF_SC_PARAM) );
+
+/*****************************************************************************************/
+/************ Epiline functions *******************/
+
+
+
+typedef struct CvStereoLineCoeff
+{
+ double Xcoef;
+ double XcoefA;
+ double XcoefB;
+ double XcoefAB;
+
+ double Ycoef;
+ double YcoefA;
+ double YcoefB;
+ double YcoefAB;
+
+ double Zcoef;
+ double ZcoefA;
+ double ZcoefB;
+ double ZcoefAB;
+}CvStereoLineCoeff;
+
+
+typedef struct CvCamera
+{
+ float imgSize[2]; /* size of the camera view, used during calibration */
+ float matrix[9]; /* intinsic camera parameters: [ fx 0 cx; 0 fy cy; 0 0 1 ] */
+ float distortion[4]; /* distortion coefficients - two coefficients for radial distortion
+ and another two for tangential: [ k1 k2 p1 p2 ] */
+ float rotMatr[9];
+ float transVect[3]; /* rotation matrix and transition vector relatively
+ to some reference point in the space. */
+} CvCamera;
+
+typedef struct CvStereoCamera
+{
+ CvCamera* camera[2]; /* two individual camera parameters */
+ float fundMatr[9]; /* fundamental matrix */
+
+ /* New part for stereo */
+ CvPoint3D32f epipole[2];
+ CvPoint2D32f quad[2][4]; /* coordinates of destination quadrangle after
+ epipolar geometry rectification */
+ double coeffs[2][3][3];/* coefficients for transformation */
+ CvPoint2D32f border[2][4];
+ CvSize warpSize;
+ CvStereoLineCoeff* lineCoeffs;
+ int needSwapCameras;/* flag set to 1 if need to swap cameras for good reconstruction */
+ float rotMatrix[9];
+ float transVector[3];
+} CvStereoCamera;
+
+
+typedef struct CvContourOrientation
+{
+ float egvals[2];
+ float egvects[4];
+
+ float max, min; // minimum and maximum projections
+ int imax, imin;
+} CvContourOrientation;
+
+#define CV_CAMERA_TO_WARP 1
+#define CV_WARP_TO_CAMERA 2
+
+CVAPI(int) icvConvertWarpCoordinates(double coeffs[3][3],
+ CvPoint2D32f* cameraPoint,
+ CvPoint2D32f* warpPoint,
+ int direction);
+
+CVAPI(int) icvGetSymPoint3D( CvPoint3D64f pointCorner,
+ CvPoint3D64f point1,
+ CvPoint3D64f point2,
+ CvPoint3D64f *pointSym2);
+
+CVAPI(void) icvGetPieceLength3D(CvPoint3D64f point1,CvPoint3D64f point2,double* dist);
+
+CVAPI(int) icvCompute3DPoint( double alpha,double betta,
+ CvStereoLineCoeff* coeffs,
+ CvPoint3D64f* point);
+
+CVAPI(int) icvCreateConvertMatrVect( double* rotMatr1,
+ double* transVect1,
+ double* rotMatr2,
+ double* transVect2,
+ double* convRotMatr,
+ double* convTransVect);
+
+CVAPI(int) icvConvertPointSystem(CvPoint3D64f M2,
+ CvPoint3D64f* M1,
+ double* rotMatr,
+ double* transVect
+ );
+
+CVAPI(int) icvComputeCoeffForStereo( CvStereoCamera* stereoCamera);
+
+CVAPI(int) icvGetCrossPieceVector(CvPoint2D32f p1_start,CvPoint2D32f p1_end,CvPoint2D32f v2_start,CvPoint2D32f v2_end,CvPoint2D32f *cross);
+CVAPI(int) icvGetCrossLineDirect(CvPoint2D32f p1,CvPoint2D32f p2,float a,float b,float c,CvPoint2D32f* cross);
+CVAPI(float) icvDefinePointPosition(CvPoint2D32f point1,CvPoint2D32f point2,CvPoint2D32f point);
+CVAPI(int) icvStereoCalibration( int numImages,
+ int* nums,
+ CvSize imageSize,
+ CvPoint2D32f* imagePoints1,
+ CvPoint2D32f* imagePoints2,
+ CvPoint3D32f* objectPoints,
+ CvStereoCamera* stereoparams
+ );
+
+
+CVAPI(int) icvComputeRestStereoParams(CvStereoCamera *stereoparams);
+
+CVAPI(void) cvComputePerspectiveMap( const double coeffs[3][3], CvArr* rectMapX, CvArr* rectMapY );
+
+CVAPI(int) icvComCoeffForLine( CvPoint2D64f point1,
+ CvPoint2D64f point2,
+ CvPoint2D64f point3,
+ CvPoint2D64f point4,
+ double* camMatr1,
+ double* rotMatr1,
+ double* transVect1,
+ double* camMatr2,
+ double* rotMatr2,
+ double* transVect2,
+ CvStereoLineCoeff* coeffs,
+ int* needSwapCameras);
+
+CVAPI(int) icvGetDirectionForPoint( CvPoint2D64f point,
+ double* camMatr,
+ CvPoint3D64f* direct);
+
+CVAPI(int) icvGetCrossLines(CvPoint3D64f point11,CvPoint3D64f point12,
+ CvPoint3D64f point21,CvPoint3D64f point22,
+ CvPoint3D64f* midPoint);
+
+CVAPI(int) icvComputeStereoLineCoeffs( CvPoint3D64f pointA,
+ CvPoint3D64f pointB,
+ CvPoint3D64f pointCam1,
+ double gamma,
+ CvStereoLineCoeff* coeffs);
+
+/*CVAPI(int) icvComputeFundMatrEpipoles ( double* camMatr1,
+ double* rotMatr1,
+ double* transVect1,
+ double* camMatr2,
+ double* rotMatr2,
+ double* transVect2,
+ CvPoint2D64f* epipole1,
+ CvPoint2D64f* epipole2,
+ double* fundMatr);*/
+
+CVAPI(int) icvGetAngleLine( CvPoint2D64f startPoint, CvSize imageSize,CvPoint2D64f *point1,CvPoint2D64f *point2);
+
+CVAPI(void) icvGetCoefForPiece( CvPoint2D64f p_start,CvPoint2D64f p_end,
+ double *a,double *b,double *c,
+ int* result);
+
+/*CVAPI(void) icvGetCommonArea( CvSize imageSize,
+ CvPoint2D64f epipole1,CvPoint2D64f epipole2,
+ double* fundMatr,
+ double* coeff11,double* coeff12,
+ double* coeff21,double* coeff22,
+ int* result);*/
+
+CVAPI(void) icvComputeeInfiniteProject1(double* rotMatr,
+ double* camMatr1,
+ double* camMatr2,
+ CvPoint2D32f point1,
+ CvPoint2D32f *point2);
+
+CVAPI(void) icvComputeeInfiniteProject2(double* rotMatr,
+ double* camMatr1,
+ double* camMatr2,
+ CvPoint2D32f* point1,
+ CvPoint2D32f point2);
+
+CVAPI(void) icvGetCrossDirectDirect( double* direct1,double* direct2,
+ CvPoint2D64f *cross,int* result);
+
+CVAPI(void) icvGetCrossPieceDirect( CvPoint2D64f p_start,CvPoint2D64f p_end,
+ double a,double b,double c,
+ CvPoint2D64f *cross,int* result);
+
+CVAPI(void) icvGetCrossPiecePiece( CvPoint2D64f p1_start,CvPoint2D64f p1_end,
+ CvPoint2D64f p2_start,CvPoint2D64f p2_end,
+ CvPoint2D64f* cross,
+ int* result);
+
+CVAPI(void) icvGetPieceLength(CvPoint2D64f point1,CvPoint2D64f point2,double* dist);
+
+CVAPI(void) icvGetCrossRectDirect( CvSize imageSize,
+ double a,double b,double c,
+ CvPoint2D64f *start,CvPoint2D64f *end,
+ int* result);
+
+CVAPI(void) icvProjectPointToImage( CvPoint3D64f point,
+ double* camMatr,double* rotMatr,double* transVect,
+ CvPoint2D64f* projPoint);
+
+CVAPI(void) icvGetQuadsTransform( CvSize imageSize,
+ double* camMatr1,
+ double* rotMatr1,
+ double* transVect1,
+ double* camMatr2,
+ double* rotMatr2,
+ double* transVect2,
+ CvSize* warpSize,
+ double quad1[4][2],
+ double quad2[4][2],
+ double* fundMatr,
+ CvPoint3D64f* epipole1,
+ CvPoint3D64f* epipole2
+ );
+
+CVAPI(void) icvGetQuadsTransformStruct( CvStereoCamera* stereoCamera);
+
+CVAPI(void) icvComputeStereoParamsForCameras(CvStereoCamera* stereoCamera);
+
+CVAPI(void) icvGetCutPiece( double* areaLineCoef1,double* areaLineCoef2,
+ CvPoint2D64f epipole,
+ CvSize imageSize,
+ CvPoint2D64f* point11,CvPoint2D64f* point12,
+ CvPoint2D64f* point21,CvPoint2D64f* point22,
+ int* result);
+
+CVAPI(void) icvGetMiddleAnglePoint( CvPoint2D64f basePoint,
+ CvPoint2D64f point1,CvPoint2D64f point2,
+ CvPoint2D64f* midPoint);
+
+CVAPI(void) icvGetNormalDirect(double* direct,CvPoint2D64f point,double* normDirect);
+
+CVAPI(double) icvGetVect(CvPoint2D64f basePoint,CvPoint2D64f point1,CvPoint2D64f point2);
+
+CVAPI(void) icvProjectPointToDirect( CvPoint2D64f point,double* lineCoeff,
+ CvPoint2D64f* projectPoint);
+
+CVAPI(void) icvGetDistanceFromPointToDirect( CvPoint2D64f point,double* lineCoef,double*dist);
+
+CVAPI(IplImage*) icvCreateIsometricImage( IplImage* src, IplImage* dst,
+ int desired_depth, int desired_num_channels );
+
+CVAPI(void) cvDeInterlace( const CvArr* frame, CvArr* fieldEven, CvArr* fieldOdd );
+
+/*CVAPI(int) icvSelectBestRt( int numImages,
+ int* numPoints,
+ CvSize imageSize,
+ CvPoint2D32f* imagePoints1,
+ CvPoint2D32f* imagePoints2,
+ CvPoint3D32f* objectPoints,
+
+ CvMatr32f cameraMatrix1,
+ CvVect32f distortion1,
+ CvMatr32f rotMatrs1,
+ CvVect32f transVects1,
+
+ CvMatr32f cameraMatrix2,
+ CvVect32f distortion2,
+ CvMatr32f rotMatrs2,
+ CvVect32f transVects2,
+
+ CvMatr32f bestRotMatr,
+ CvVect32f bestTransVect
+ );*/
+
+
+/****************************************************************************************\
+* Contour Tree *
+\****************************************************************************************/
+
+/* Contour tree header */
+typedef struct CvContourTree
+{
+ CV_SEQUENCE_FIELDS()
+ CvPoint p1; /* the first point of the binary tree root segment */
+ CvPoint p2; /* the last point of the binary tree root segment */
+} CvContourTree;
+
+/* Builds hierarhical representation of a contour */
+CVAPI(CvContourTree*) cvCreateContourTree( const CvSeq* contour,
+ CvMemStorage* storage,
+ double threshold );
+
+/* Reconstruct (completelly or partially) contour a from contour tree */
+CVAPI(CvSeq*) cvContourFromContourTree( const CvContourTree* tree,
+ CvMemStorage* storage,
+ CvTermCriteria criteria );
+
+/* Compares two contour trees */
+enum { CV_CONTOUR_TREES_MATCH_I1 = 1 };
+
+CVAPI(double) cvMatchContourTrees( const CvContourTree* tree1,
+ const CvContourTree* tree2,
+ int method, double threshold );
+
+/****************************************************************************************\
+* Contour Morphing *
+\****************************************************************************************/
+
+/* finds correspondence between two contours */
+CvSeq* cvCalcContoursCorrespondence( const CvSeq* contour1,
+ const CvSeq* contour2,
+ CvMemStorage* storage);
+
+/* morphs contours using the pre-calculated correspondence:
+ alpha=0 ~ contour1, alpha=1 ~ contour2 */
+CvSeq* cvMorphContours( const CvSeq* contour1, const CvSeq* contour2,
+ CvSeq* corr, double alpha,
+ CvMemStorage* storage );
+
+
+/****************************************************************************************\
+* Active Contours *
+\****************************************************************************************/
+
+#define CV_VALUE 1
+#define CV_ARRAY 2
+/* Updates active contour in order to minimize its cummulative
+ (internal and external) energy. */
+CVAPI(void) cvSnakeImage( const IplImage* image, CvPoint* points,
+ int length, float* alpha,
+ float* beta, float* gamma,
+ int coeff_usage, CvSize win,
+ CvTermCriteria criteria, int calc_gradient CV_DEFAULT(1));
+
+/****************************************************************************************\
+* Texture Descriptors *
+\****************************************************************************************/
+
+#define CV_GLCM_OPTIMIZATION_NONE -2
+#define CV_GLCM_OPTIMIZATION_LUT -1
+#define CV_GLCM_OPTIMIZATION_HISTOGRAM 0
+
+#define CV_GLCMDESC_OPTIMIZATION_ALLOWDOUBLENEST 10
+#define CV_GLCMDESC_OPTIMIZATION_ALLOWTRIPLENEST 11
+#define CV_GLCMDESC_OPTIMIZATION_HISTOGRAM 4
+
+#define CV_GLCMDESC_ENTROPY 0
+#define CV_GLCMDESC_ENERGY 1
+#define CV_GLCMDESC_HOMOGENITY 2
+#define CV_GLCMDESC_CONTRAST 3
+#define CV_GLCMDESC_CLUSTERTENDENCY 4
+#define CV_GLCMDESC_CLUSTERSHADE 5
+#define CV_GLCMDESC_CORRELATION 6
+#define CV_GLCMDESC_CORRELATIONINFO1 7
+#define CV_GLCMDESC_CORRELATIONINFO2 8
+#define CV_GLCMDESC_MAXIMUMPROBABILITY 9
+
+#define CV_GLCM_ALL 0
+#define CV_GLCM_GLCM 1
+#define CV_GLCM_DESC 2
+
+typedef struct CvGLCM CvGLCM;
+
+CVAPI(CvGLCM*) cvCreateGLCM( const IplImage* srcImage,
+ int stepMagnitude,
+ const int* stepDirections CV_DEFAULT(0),
+ int numStepDirections CV_DEFAULT(0),
+ int optimizationType CV_DEFAULT(CV_GLCM_OPTIMIZATION_NONE));
+
+CVAPI(void) cvReleaseGLCM( CvGLCM** GLCM, int flag CV_DEFAULT(CV_GLCM_ALL));
+
+CVAPI(void) cvCreateGLCMDescriptors( CvGLCM* destGLCM,
+ int descriptorOptimizationType
+ CV_DEFAULT(CV_GLCMDESC_OPTIMIZATION_ALLOWDOUBLENEST));
+
+CVAPI(double) cvGetGLCMDescriptor( CvGLCM* GLCM, int step, int descriptor );
+
+CVAPI(void) cvGetGLCMDescriptorStatistics( CvGLCM* GLCM, int descriptor,
+ double* average, double* standardDeviation );
+
+CVAPI(IplImage*) cvCreateGLCMImage( CvGLCM* GLCM, int step );
+
+/****************************************************************************************\
+* Face eyes&mouth tracking *
+\****************************************************************************************/
+
+
+typedef struct CvFaceTracker CvFaceTracker;
+
+#define CV_NUM_FACE_ELEMENTS 3
+enum CV_FACE_ELEMENTS
+{
+ CV_FACE_MOUTH = 0,
+ CV_FACE_LEFT_EYE = 1,
+ CV_FACE_RIGHT_EYE = 2
+};
+
+CVAPI(CvFaceTracker*) cvInitFaceTracker(CvFaceTracker* pFaceTracking, const IplImage* imgGray,
+ CvRect* pRects, int nRects);
+CVAPI(int) cvTrackFace( CvFaceTracker* pFaceTracker, IplImage* imgGray,
+ CvRect* pRects, int nRects,
+ CvPoint* ptRotate, double* dbAngleRotate);
+CVAPI(void) cvReleaseFaceTracker(CvFaceTracker** ppFaceTracker);
+
+
+typedef struct CvFace
+{
+ CvRect MouthRect;
+ CvRect LeftEyeRect;
+ CvRect RightEyeRect;
+} CvFaceData;
+
+CvSeq * cvFindFace(IplImage * Image,CvMemStorage* storage);
+CvSeq * cvPostBoostingFindFace(IplImage * Image,CvMemStorage* storage);
+
+
+/****************************************************************************************\
+* 3D Tracker *
+\****************************************************************************************/
+
+typedef unsigned char CvBool;
+
+typedef struct Cv3dTracker2dTrackedObject
+{
+ int id;
+ CvPoint2D32f p; // pgruebele: So we do not loose precision, this needs to be float
+} Cv3dTracker2dTrackedObject;
+
+CV_INLINE Cv3dTracker2dTrackedObject cv3dTracker2dTrackedObject(int id, CvPoint2D32f p)
+{
+ Cv3dTracker2dTrackedObject r;
+ r.id = id;
+ r.p = p;
+ return r;
+}
+
+typedef struct Cv3dTrackerTrackedObject
+{
+ int id;
+ CvPoint3D32f p; // location of the tracked object
+} Cv3dTrackerTrackedObject;
+
+CV_INLINE Cv3dTrackerTrackedObject cv3dTrackerTrackedObject(int id, CvPoint3D32f p)
+{
+ Cv3dTrackerTrackedObject r;
+ r.id = id;
+ r.p = p;
+ return r;
+}
+
+typedef struct Cv3dTrackerCameraInfo
+{
+ CvBool valid;
+ float mat[4][4]; /* maps camera coordinates to world coordinates */
+ CvPoint2D32f principal_point; /* copied from intrinsics so this structure */
+ /* has all the info we need */
+} Cv3dTrackerCameraInfo;
+
+typedef struct Cv3dTrackerCameraIntrinsics
+{
+ CvPoint2D32f principal_point;
+ float focal_length[2];
+ float distortion[4];
+} Cv3dTrackerCameraIntrinsics;
+
+CVAPI(CvBool) cv3dTrackerCalibrateCameras(int num_cameras,
+ const Cv3dTrackerCameraIntrinsics camera_intrinsics[], /* size is num_cameras */
+ CvSize etalon_size,
+ float square_size,
+ IplImage *samples[], /* size is num_cameras */
+ Cv3dTrackerCameraInfo camera_info[]); /* size is num_cameras */
+
+CVAPI(int) cv3dTrackerLocateObjects(int num_cameras, int num_objects,
+ const Cv3dTrackerCameraInfo camera_info[], /* size is num_cameras */
+ const Cv3dTracker2dTrackedObject tracking_info[], /* size is num_objects*num_cameras */
+ Cv3dTrackerTrackedObject tracked_objects[]); /* size is num_objects */
+/****************************************************************************************
+ tracking_info is a rectangular array; one row per camera, num_objects elements per row.
+ The id field of any unused slots must be -1. Ids need not be ordered or consecutive. On
+ completion, the return value is the number of objects located; i.e., the number of objects
+ visible by more than one camera. The id field of any unused slots in tracked objects is
+ set to -1.
+****************************************************************************************/
+
+
+/****************************************************************************************\
+* Skeletons and Linear-Contour Models *
+\****************************************************************************************/
+
+typedef enum CvLeeParameters
+{
+ CV_LEE_INT = 0,
+ CV_LEE_FLOAT = 1,
+ CV_LEE_DOUBLE = 2,
+ CV_LEE_AUTO = -1,
+ CV_LEE_ERODE = 0,
+ CV_LEE_ZOOM = 1,
+ CV_LEE_NON = 2
+} CvLeeParameters;
+
+#define CV_NEXT_VORONOISITE2D( SITE ) ((SITE)->edge[0]->site[((SITE)->edge[0]->site[0] == (SITE))])
+#define CV_PREV_VORONOISITE2D( SITE ) ((SITE)->edge[1]->site[((SITE)->edge[1]->site[0] == (SITE))])
+#define CV_FIRST_VORONOIEDGE2D( SITE ) ((SITE)->edge[0])
+#define CV_LAST_VORONOIEDGE2D( SITE ) ((SITE)->edge[1])
+#define CV_NEXT_VORONOIEDGE2D( EDGE, SITE ) ((EDGE)->next[(EDGE)->site[0] != (SITE)])
+#define CV_PREV_VORONOIEDGE2D( EDGE, SITE ) ((EDGE)->next[2 + ((EDGE)->site[0] != (SITE))])
+#define CV_VORONOIEDGE2D_BEGINNODE( EDGE, SITE ) ((EDGE)->node[((EDGE)->site[0] != (SITE))])
+#define CV_VORONOIEDGE2D_ENDNODE( EDGE, SITE ) ((EDGE)->node[((EDGE)->site[0] == (SITE))])
+#define CV_TWIN_VORONOISITE2D( SITE, EDGE ) ( (EDGE)->site[((EDGE)->site[0] == (SITE))])
+
+#define CV_VORONOISITE2D_FIELDS() \
+ struct CvVoronoiNode2D *node[2]; \
+ struct CvVoronoiEdge2D *edge[2];
+
+typedef struct CvVoronoiSite2D
+{
+ CV_VORONOISITE2D_FIELDS()
+ struct CvVoronoiSite2D *next[2];
+} CvVoronoiSite2D;
+
+#define CV_VORONOIEDGE2D_FIELDS() \
+ struct CvVoronoiNode2D *node[2]; \
+ struct CvVoronoiSite2D *site[2]; \
+ struct CvVoronoiEdge2D *next[4];
+
+typedef struct CvVoronoiEdge2D
+{
+ CV_VORONOIEDGE2D_FIELDS()
+} CvVoronoiEdge2D;
+
+#define CV_VORONOINODE2D_FIELDS() \
+ CV_SET_ELEM_FIELDS(CvVoronoiNode2D) \
+ CvPoint2D32f pt; \
+ float radius;
+
+typedef struct CvVoronoiNode2D
+{
+ CV_VORONOINODE2D_FIELDS()
+} CvVoronoiNode2D;
+
+#define CV_VORONOIDIAGRAM2D_FIELDS() \
+ CV_GRAPH_FIELDS() \
+ CvSet *sites;
+
+typedef struct CvVoronoiDiagram2D
+{
+ CV_VORONOIDIAGRAM2D_FIELDS()
+} CvVoronoiDiagram2D;
+
+/* Computes Voronoi Diagram for given polygons with holes */
+CVAPI(int) cvVoronoiDiagramFromContour(CvSeq* ContourSeq,
+ CvVoronoiDiagram2D** VoronoiDiagram,
+ CvMemStorage* VoronoiStorage,
+ CvLeeParameters contour_type CV_DEFAULT(CV_LEE_INT),
+ int contour_orientation CV_DEFAULT(-1),
+ int attempt_number CV_DEFAULT(10));
+
+/* Computes Voronoi Diagram for domains in given image */
+CVAPI(int) cvVoronoiDiagramFromImage(IplImage* pImage,
+ CvSeq** ContourSeq,
+ CvVoronoiDiagram2D** VoronoiDiagram,
+ CvMemStorage* VoronoiStorage,
+ CvLeeParameters regularization_method CV_DEFAULT(CV_LEE_NON),
+ float approx_precision CV_DEFAULT(CV_LEE_AUTO));
+
+/* Deallocates the storage */
+CVAPI(void) cvReleaseVoronoiStorage(CvVoronoiDiagram2D* VoronoiDiagram,
+ CvMemStorage** pVoronoiStorage);
+
+/*********************** Linear-Contour Model ****************************/
+
+struct CvLCMEdge;
+struct CvLCMNode;
+
+typedef struct CvLCMEdge
+{
+ CV_GRAPH_EDGE_FIELDS()
+ CvSeq* chain;
+ float width;
+ int index1;
+ int index2;
+} CvLCMEdge;
+
+typedef struct CvLCMNode
+{
+ CV_GRAPH_VERTEX_FIELDS()
+ CvContour* contour;
+} CvLCMNode;
+
+
+/* Computes hybrid model from Voronoi Diagram */
+CVAPI(CvGraph*) cvLinearContorModelFromVoronoiDiagram(CvVoronoiDiagram2D* VoronoiDiagram,
+ float maxWidth);
+
+/* Releases hybrid model storage */
+CVAPI(int) cvReleaseLinearContorModelStorage(CvGraph** Graph);
+
+
+/* two stereo-related functions */
+
+CVAPI(void) cvInitPerspectiveTransform( CvSize size, const CvPoint2D32f vertex[4], double matrix[3][3],
+ CvArr* rectMap );
+
+/*CVAPI(void) cvInitStereoRectification( CvStereoCamera* params,
+ CvArr* rectMap1, CvArr* rectMap2,
+ int do_undistortion );*/
+
+/*************************** View Morphing Functions ************************/
+
+typedef struct CvMatrix3
+{
+ float m[3][3];
+} CvMatrix3;
+
+/* The order of the function corresponds to the order they should appear in
+ the view morphing pipeline */
+
+/* Finds ending points of scanlines on left and right images of stereo-pair */
+CVAPI(void) cvMakeScanlines( const CvMatrix3* matrix, CvSize img_size,
+ int* scanlines1, int* scanlines2,
+ int* lengths1, int* lengths2,
+ int* line_count );
+
+/* Grab pixel values from scanlines and stores them sequentially
+ (some sort of perspective image transform) */
+CVAPI(void) cvPreWarpImage( int line_count,
+ IplImage* img,
+ uchar* dst,
+ int* dst_nums,
+ int* scanlines);
+
+/* Approximate each grabbed scanline by a sequence of runs
+ (lossy run-length compression) */
+CVAPI(void) cvFindRuns( int line_count,
+ uchar* prewarp1,
+ uchar* prewarp2,
+ int* line_lengths1,
+ int* line_lengths2,
+ int* runs1,
+ int* runs2,
+ int* num_runs1,
+ int* num_runs2);
+
+/* Compares two sets of compressed scanlines */
+CVAPI(void) cvDynamicCorrespondMulti( int line_count,
+ int* first,
+ int* first_runs,
+ int* second,
+ int* second_runs,
+ int* first_corr,
+ int* second_corr);
+
+/* Finds scanline ending coordinates for some intermediate "virtual" camera position */
+CVAPI(void) cvMakeAlphaScanlines( int* scanlines1,
+ int* scanlines2,
+ int* scanlinesA,
+ int* lengths,
+ int line_count,
+ float alpha);
+
+/* Blends data of the left and right image scanlines to get
+ pixel values of "virtual" image scanlines */
+CVAPI(void) cvMorphEpilinesMulti( int line_count,
+ uchar* first_pix,
+ int* first_num,
+ uchar* second_pix,
+ int* second_num,
+ uchar* dst_pix,
+ int* dst_num,
+ float alpha,
+ int* first,
+ int* first_runs,
+ int* second,
+ int* second_runs,
+ int* first_corr,
+ int* second_corr);
+
+/* Does reverse warping of the morphing result to make
+ it fill the destination image rectangle */
+CVAPI(void) cvPostWarpImage( int line_count,
+ uchar* src,
+ int* src_nums,
+ IplImage* img,
+ int* scanlines);
+
+/* Deletes Moire (missed pixels that appear due to discretization) */
+CVAPI(void) cvDeleteMoire( IplImage* img );
+
+
+typedef struct CvConDensation
+{
+ int MP;
+ int DP;
+ float* DynamMatr; /* Matrix of the linear Dynamics system */
+ float* State; /* Vector of State */
+ int SamplesNum; /* Number of the Samples */
+ float** flSamples; /* arr of the Sample Vectors */
+ float** flNewSamples; /* temporary array of the Sample Vectors */
+ float* flConfidence; /* Confidence for each Sample */
+ float* flCumulative; /* Cumulative confidence */
+ float* Temp; /* Temporary vector */
+ float* RandomSample; /* RandomVector to update sample set */
+ struct CvRandState* RandS; /* Array of structures to generate random vectors */
+} CvConDensation;
+
+/* Creates ConDensation filter state */
+CVAPI(CvConDensation*) cvCreateConDensation( int dynam_params,
+ int measure_params,
+ int sample_count );
+
+/* Releases ConDensation filter state */
+CVAPI(void) cvReleaseConDensation( CvConDensation** condens );
+
+/* Updates ConDensation filter by time (predict future state of the system) */
+CVAPI(void) cvConDensUpdateByTime( CvConDensation* condens);
+
+/* Initializes ConDensation filter samples */
+CVAPI(void) cvConDensInitSampleSet( CvConDensation* condens, CvMat* lower_bound, CvMat* upper_bound );
+
+CV_INLINE int iplWidth( const IplImage* img )
+{
+ return !img ? 0 : !img->roi ? img->width : img->roi->width;
+}
+
+CV_INLINE int iplHeight( const IplImage* img )
+{
+ return !img ? 0 : !img->roi ? img->height : img->roi->height;
+}
+
+#ifdef __cplusplus
+}
+#endif
+
+#ifdef __cplusplus
+
+/****************************************************************************************\
+* Calibration engine *
+\****************************************************************************************/
+
+typedef enum CvCalibEtalonType
+{
+ CV_CALIB_ETALON_USER = -1,
+ CV_CALIB_ETALON_CHESSBOARD = 0,
+ CV_CALIB_ETALON_CHECKERBOARD = CV_CALIB_ETALON_CHESSBOARD
+}
+CvCalibEtalonType;
+
+class CV_EXPORTS CvCalibFilter
+{
+public:
+ /* Constructor & destructor */
+ CvCalibFilter();
+ virtual ~CvCalibFilter();
+
+ /* Sets etalon type - one for all cameras.
+ etalonParams is used in case of pre-defined etalons (such as chessboard).
+ Number of elements in etalonParams is determined by etalonType.
+ E.g., if etalon type is CV_ETALON_TYPE_CHESSBOARD then:
+ etalonParams[0] is number of squares per one side of etalon
+ etalonParams[1] is number of squares per another side of etalon
+ etalonParams[2] is linear size of squares in the board in arbitrary units.
+ pointCount & points are used in case of
+ CV_CALIB_ETALON_USER (user-defined) etalon. */
+ virtual bool
+ SetEtalon( CvCalibEtalonType etalonType, double* etalonParams,
+ int pointCount = 0, CvPoint2D32f* points = 0 );
+
+ /* Retrieves etalon parameters/or and points */
+ virtual CvCalibEtalonType
+ GetEtalon( int* paramCount = 0, const double** etalonParams = 0,
+ int* pointCount = 0, const CvPoint2D32f** etalonPoints = 0 ) const;
+
+ /* Sets number of cameras calibrated simultaneously. It is equal to 1 initially */
+ virtual void SetCameraCount( int cameraCount );
+
+ /* Retrieves number of cameras */
+ int GetCameraCount() const { return cameraCount; }
+
+ /* Starts cameras calibration */
+ virtual bool SetFrames( int totalFrames );
+
+ /* Stops cameras calibration */
+ virtual void Stop( bool calibrate = false );
+
+ /* Retrieves number of cameras */
+ bool IsCalibrated() const { return isCalibrated; }
+
+ /* Feeds another serie of snapshots (one per each camera) to filter.
+ Etalon points on these images are found automatically.
+ If the function can't locate points, it returns false */
+ virtual bool FindEtalon( IplImage** imgs );
+
+ /* The same but takes matrices */
+ virtual bool FindEtalon( CvMat** imgs );
+
+ /* Lower-level function for feeding filter with already found etalon points.
+ Array of point arrays for each camera is passed. */
+ virtual bool Push( const CvPoint2D32f** points = 0 );
+
+ /* Returns total number of accepted frames and, optionally,
+ total number of frames to collect */
+ virtual int GetFrameCount( int* framesTotal = 0 ) const;
+
+ /* Retrieves camera parameters for specified camera.
+ If camera is not calibrated the function returns 0 */
+ virtual const CvCamera* GetCameraParams( int idx = 0 ) const;
+
+ virtual const CvStereoCamera* GetStereoParams() const;
+
+ /* Sets camera parameters for all cameras */
+ virtual bool SetCameraParams( CvCamera* params );
+
+ /* Saves all camera parameters to file */
+ virtual bool SaveCameraParams( const char* filename );
+
+ /* Loads all camera parameters from file */
+ virtual bool LoadCameraParams( const char* filename );
+
+ /* Undistorts images using camera parameters. Some of src pointers can be NULL. */
+ virtual bool Undistort( IplImage** src, IplImage** dst );
+
+ /* Undistorts images using camera parameters. Some of src pointers can be NULL. */
+ virtual bool Undistort( CvMat** src, CvMat** dst );
+
+ /* Returns array of etalon points detected/partally detected
+ on the latest frame for idx-th camera */
+ virtual bool GetLatestPoints( int idx, CvPoint2D32f** pts,
+ int* count, bool* found );
+
+ /* Draw the latest detected/partially detected etalon */
+ virtual void DrawPoints( IplImage** dst );
+
+ /* Draw the latest detected/partially detected etalon */
+ virtual void DrawPoints( CvMat** dst );
+
+ virtual bool Rectify( IplImage** srcarr, IplImage** dstarr );
+ virtual bool Rectify( CvMat** srcarr, CvMat** dstarr );
+
+protected:
+
+ enum { MAX_CAMERAS = 3 };
+
+ /* etalon data */
+ CvCalibEtalonType etalonType;
+ int etalonParamCount;
+ double* etalonParams;
+ int etalonPointCount;
+ CvPoint2D32f* etalonPoints;
+ CvSize imgSize;
+ CvMat* grayImg;
+ CvMat* tempImg;
+ CvMemStorage* storage;
+
+ /* camera data */
+ int cameraCount;
+ CvCamera cameraParams[MAX_CAMERAS];
+ CvStereoCamera stereo;
+ CvPoint2D32f* points[MAX_CAMERAS];
+ CvMat* undistMap[MAX_CAMERAS][2];
+ CvMat* undistImg;
+ int latestCounts[MAX_CAMERAS];
+ CvPoint2D32f* latestPoints[MAX_CAMERAS];
+ CvMat* rectMap[MAX_CAMERAS][2];
+
+ /* Added by Valery */
+ //CvStereoCamera stereoParams;
+
+ int maxPoints;
+ int framesTotal;
+ int framesAccepted;
+ bool isCalibrated;
+};
+
+#include <iosfwd>
+#include <limits>
+
+class CV_EXPORTS CvImage
+{
+public:
+ CvImage() : image(0), refcount(0) {}
+ CvImage( CvSize _size, int _depth, int _channels )
+ {
+ image = cvCreateImage( _size, _depth, _channels );
+ refcount = image ? new int(1) : 0;
+ }
+
+ CvImage( IplImage* img ) : image(img)
+ {
+ refcount = image ? new int(1) : 0;
+ }
+
+ CvImage( const CvImage& img ) : image(img.image), refcount(img.refcount)
+ {
+ if( refcount ) ++(*refcount);
+ }
+
+ CvImage( const char* filename, const char* imgname=0, int color=-1 ) : image(0), refcount(0)
+ { load( filename, imgname, color ); }
+
+ CvImage( CvFileStorage* fs, const char* mapname, const char* imgname ) : image(0), refcount(0)
+ { read( fs, mapname, imgname ); }
+
+ CvImage( CvFileStorage* fs, const char* seqname, int idx ) : image(0), refcount(0)
+ { read( fs, seqname, idx ); }
+
+ ~CvImage()
+ {
+ if( refcount && !(--*refcount) )
+ {
+ cvReleaseImage( &image );
+ delete refcount;
+ }
+ }
+
+ CvImage clone() { return CvImage(image ? cvCloneImage(image) : 0); }
+
+ void create( CvSize _size, int _depth, int _channels )
+ {
+ if( !image || !refcount ||
+ image->width != _size.width || image->height != _size.height ||
+ image->depth != _depth || image->nChannels != _channels )
+ attach( cvCreateImage( _size, _depth, _channels ));
+ }
+
+ void release() { detach(); }
+ void clear() { detach(); }
+
+ void attach( IplImage* img, bool use_refcount=true )
+ {
+ if( refcount && --*refcount == 0 )
+ {
+ cvReleaseImage( &image );
+ delete refcount;
+ }
+ image = img;
+ refcount = use_refcount && image ? new int(1) : 0;
+ }
+
+ void detach()
+ {
+ if( refcount && --*refcount == 0 )
+ {
+ cvReleaseImage( &image );
+ delete refcount;
+ }
+ image = 0;
+ refcount = 0;
+ }
+
+ bool load( const char* filename, const char* imgname=0, int color=-1 );
+ bool read( CvFileStorage* fs, const char* mapname, const char* imgname );
+ bool read( CvFileStorage* fs, const char* seqname, int idx );
+ void save( const char* filename, const char* imgname, const int* params=0 );
+ void write( CvFileStorage* fs, const char* imgname );
+
+ void show( const char* window_name );
+ bool is_valid() { return image != 0; }
+
+ int width() const { return image ? image->width : 0; }
+ int height() const { return image ? image->height : 0; }
+
+ CvSize size() const { return image ? cvSize(image->width, image->height) : cvSize(0,0); }
+
+ CvSize roi_size() const
+ {
+ return !image ? cvSize(0,0) :
+ !image->roi ? cvSize(image->width,image->height) :
+ cvSize(image->roi->width, image->roi->height);
+ }
+
+ CvRect roi() const
+ {
+ return !image ? cvRect(0,0,0,0) :
+ !image->roi ? cvRect(0,0,image->width,image->height) :
+ cvRect(image->roi->xOffset,image->roi->yOffset,
+ image->roi->width,image->roi->height);
+ }
+
+ int coi() const { return !image || !image->roi ? 0 : image->roi->coi; }
+
+ void set_roi(CvRect _roi) { cvSetImageROI(image,_roi); }
+ void reset_roi() { cvResetImageROI(image); }
+ void set_coi(int _coi) { cvSetImageCOI(image,_coi); }
+ int depth() const { return image ? image->depth : 0; }
+ int channels() const { return image ? image->nChannels : 0; }
+ int pix_size() const { return image ? ((image->depth & 255)>>3)*image->nChannels : 0; }
+
+ uchar* data() { return image ? (uchar*)image->imageData : 0; }
+ const uchar* data() const { return image ? (const uchar*)image->imageData : 0; }
+ int step() const { return image ? image->widthStep : 0; }
+ int origin() const { return image ? image->origin : 0; }
+
+ uchar* roi_row(int y)
+ {
+ assert(0<=y);
+ assert(!image ?
+ 1 : image->roi ?
+ y<image->roi->height : y<image->height);
+
+ return !image ? 0 :
+ !image->roi ?
+ (uchar*)(image->imageData + y*image->widthStep) :
+ (uchar*)(image->imageData + (y+image->roi->yOffset)*image->widthStep +
+ image->roi->xOffset*((image->depth & 255)>>3)*image->nChannels);
+ }
+
+ const uchar* roi_row(int y) const
+ {
+ assert(0<=y);
+ assert(!image ?
+ 1 : image->roi ?
+ y<image->roi->height : y<image->height);
+
+ return !image ? 0 :
+ !image->roi ?
+ (const uchar*)(image->imageData + y*image->widthStep) :
+ (const uchar*)(image->imageData + (y+image->roi->yOffset)*image->widthStep +
+ image->roi->xOffset*((image->depth & 255)>>3)*image->nChannels);
+ }
+
+ operator const IplImage* () const { return image; }
+ operator IplImage* () { return image; }
+
+ CvImage& operator = (const CvImage& img)
+ {
+ if( img.refcount )
+ ++*img.refcount;
+ if( refcount && !(--*refcount) )
+ cvReleaseImage( &image );
+ image=img.image;
+ refcount=img.refcount;
+ return *this;
+ }
+
+protected:
+ IplImage* image;
+ int* refcount;
+};
+
+
+class CV_EXPORTS CvMatrix
+{
+public:
+ CvMatrix() : matrix(0) {}
+ CvMatrix( int _rows, int _cols, int _type )
+ { matrix = cvCreateMat( _rows, _cols, _type ); }
+
+ CvMatrix( int _rows, int _cols, int _type, CvMat* hdr,
+ void* _data=0, int _step=CV_AUTOSTEP )
+ { matrix = cvInitMatHeader( hdr, _rows, _cols, _type, _data, _step ); }
+
+ CvMatrix( int rows, int cols, int type, CvMemStorage* storage, bool alloc_data=true );
+
+ CvMatrix( int _rows, int _cols, int _type, void* _data, int _step=CV_AUTOSTEP )
+ { matrix = cvCreateMatHeader( _rows, _cols, _type );
+ cvSetData( matrix, _data, _step ); }
+
+ CvMatrix( CvMat* m )
+ { matrix = m; }
+
+ CvMatrix( const CvMatrix& m )
+ {
+ matrix = m.matrix;
+ addref();
+ }
+
+ CvMatrix( const char* filename, const char* matname=0, int color=-1 ) : matrix(0)
+ { load( filename, matname, color ); }
+
+ CvMatrix( CvFileStorage* fs, const char* mapname, const char* matname ) : matrix(0)
+ { read( fs, mapname, matname ); }
+
+ CvMatrix( CvFileStorage* fs, const char* seqname, int idx ) : matrix(0)
+ { read( fs, seqname, idx ); }
+
+ ~CvMatrix()
+ {
+ release();
+ }
+
+ CvMatrix clone() { return CvMatrix(matrix ? cvCloneMat(matrix) : 0); }
+
+ void set( CvMat* m, bool add_ref )
+ {
+ release();
+ matrix = m;
+ if( add_ref )
+ addref();
+ }
+
+ void create( int _rows, int _cols, int _type )
+ {
+ if( !matrix || !matrix->refcount ||
+ matrix->rows != _rows || matrix->cols != _cols ||
+ CV_MAT_TYPE(matrix->type) != _type )
+ set( cvCreateMat( _rows, _cols, _type ), false );
+ }
+
+ void addref() const
+ {
+ if( matrix )
+ {
+ if( matrix->hdr_refcount )
+ ++matrix->hdr_refcount;
+ else if( matrix->refcount )
+ ++*matrix->refcount;
+ }
+ }
+
+ void release()
+ {
+ if( matrix )
+ {
+ if( matrix->hdr_refcount )
+ {
+ if( --matrix->hdr_refcount == 0 )
+ cvReleaseMat( &matrix );
+ }
+ else if( matrix->refcount )
+ {
+ if( --*matrix->refcount == 0 )
+ cvFree( &matrix->refcount );
+ }
+ matrix = 0;
+ }
+ }
+
+ void clear()
+ {
+ release();
+ }
+
+ bool load( const char* filename, const char* matname=0, int color=-1 );
+ bool read( CvFileStorage* fs, const char* mapname, const char* matname );
+ bool read( CvFileStorage* fs, const char* seqname, int idx );
+ void save( const char* filename, const char* matname, const int* params=0 );
+ void write( CvFileStorage* fs, const char* matname );
+
+ void show( const char* window_name );
+
+ bool is_valid() { return matrix != 0; }
+
+ int rows() const { return matrix ? matrix->rows : 0; }
+ int cols() const { return matrix ? matrix->cols : 0; }
+
+ CvSize size() const
+ {
+ return !matrix ? cvSize(0,0) : cvSize(matrix->rows,matrix->cols);
+ }
+
+ int type() const { return matrix ? CV_MAT_TYPE(matrix->type) : 0; }
+ int depth() const { return matrix ? CV_MAT_DEPTH(matrix->type) : 0; }
+ int channels() const { return matrix ? CV_MAT_CN(matrix->type) : 0; }
+ int pix_size() const { return matrix ? CV_ELEM_SIZE(matrix->type) : 0; }
+
+ uchar* data() { return matrix ? matrix->data.ptr : 0; }
+ const uchar* data() const { return matrix ? matrix->data.ptr : 0; }
+ int step() const { return matrix ? matrix->step : 0; }
+
+ void set_data( void* _data, int _step=CV_AUTOSTEP )
+ { cvSetData( matrix, _data, _step ); }
+
+ uchar* row(int i) { return !matrix ? 0 : matrix->data.ptr + i*matrix->step; }
+ const uchar* row(int i) const
+ { return !matrix ? 0 : matrix->data.ptr + i*matrix->step; }
+
+ operator const CvMat* () const { return matrix; }
+ operator CvMat* () { return matrix; }
+
+ CvMatrix& operator = (const CvMatrix& _m)
+ {
+ _m.addref();
+ release();
+ matrix = _m.matrix;
+ return *this;
+ }
+
+protected:
+ CvMat* matrix;
+};
+
+/****************************************************************************************\
+ * CamShiftTracker *
+ \****************************************************************************************/
+
+class CV_EXPORTS CvCamShiftTracker
+{
+public:
+
+ CvCamShiftTracker();
+ virtual ~CvCamShiftTracker();
+
+ /**** Characteristics of the object that are calculated by track_object method *****/
+ float get_orientation() const // orientation of the object in degrees
+ { return m_box.angle; }
+ float get_length() const // the larger linear size of the object
+ { return m_box.size.height; }
+ float get_width() const // the smaller linear size of the object
+ { return m_box.size.width; }
+ CvPoint2D32f get_center() const // center of the object
+ { return m_box.center; }
+ CvRect get_window() const // bounding rectangle for the object
+ { return m_comp.rect; }
+
+ /*********************** Tracking parameters ************************/
+ int get_threshold() const // thresholding value that applied to back project
+ { return m_threshold; }
+
+ int get_hist_dims( int* dims = 0 ) const // returns number of histogram dimensions and sets
+ { return m_hist ? cvGetDims( m_hist->bins, dims ) : 0; }
+
+ int get_min_ch_val( int channel ) const // get the minimum allowed value of the specified channel
+ { return m_min_ch_val[channel]; }
+
+ int get_max_ch_val( int channel ) const // get the maximum allowed value of the specified channel
+ { return m_max_ch_val[channel]; }
+
+ // set initial object rectangle (must be called before initial calculation of the histogram)
+ bool set_window( CvRect window)
+ { m_comp.rect = window; return true; }
+
+ bool set_threshold( int threshold ) // threshold applied to the histogram bins
+ { m_threshold = threshold; return true; }
+
+ bool set_hist_bin_range( int dim, int min_val, int max_val );
+
+ bool set_hist_dims( int c_dims, int* dims );// set the histogram parameters
+
+ bool set_min_ch_val( int channel, int val ) // set the minimum allowed value of the specified channel
+ { m_min_ch_val[channel] = val; return true; }
+ bool set_max_ch_val( int channel, int val ) // set the maximum allowed value of the specified channel
+ { m_max_ch_val[channel] = val; return true; }
+
+ /************************ The processing methods *********************************/
+ // update object position
+ virtual bool track_object( const IplImage* cur_frame );
+
+ // update object histogram
+ virtual bool update_histogram( const IplImage* cur_frame );
+
+ // reset histogram
+ virtual void reset_histogram();
+
+ /************************ Retrieving internal data *******************************/
+ // get back project image
+ virtual IplImage* get_back_project()
+ { return m_back_project; }
+
+ float query( int* bin ) const
+ { return m_hist ? (float)cvGetRealND(m_hist->bins, bin) : 0.f; }
+
+protected:
+
+ // internal method for color conversion: fills m_color_planes group
+ virtual void color_transform( const IplImage* img );
+
+ CvHistogram* m_hist;
+
+ CvBox2D m_box;
+ CvConnectedComp m_comp;
+
+ float m_hist_ranges_data[CV_MAX_DIM][2];
+ float* m_hist_ranges[CV_MAX_DIM];
+
+ int m_min_ch_val[CV_MAX_DIM];
+ int m_max_ch_val[CV_MAX_DIM];
+ int m_threshold;
+
+ IplImage* m_color_planes[CV_MAX_DIM];
+ IplImage* m_back_project;
+ IplImage* m_temp;
+ IplImage* m_mask;
+};
+
+/****************************************************************************************\
+* Expectation - Maximization *
+\****************************************************************************************/
+struct CV_EXPORTS_W_MAP CvEMParams
+{
+ CvEMParams();
+ CvEMParams( int nclusters, int cov_mat_type=cv::EM::COV_MAT_DIAGONAL,
+ int start_step=cv::EM::START_AUTO_STEP,
+ CvTermCriteria term_crit=cvTermCriteria(CV_TERMCRIT_ITER+CV_TERMCRIT_EPS, 100, FLT_EPSILON),
+ const CvMat* probs=0, const CvMat* weights=0, const CvMat* means=0, const CvMat** covs=0 );
+
+ CV_PROP_RW int nclusters;
+ CV_PROP_RW int cov_mat_type;
+ CV_PROP_RW int start_step;
+ const CvMat* probs;
+ const CvMat* weights;
+ const CvMat* means;
+ const CvMat** covs;
+ CV_PROP_RW CvTermCriteria term_crit;
+};
+
+
+class CV_EXPORTS_W CvEM : public CvStatModel
+{
+public:
+ // Type of covariation matrices
+ enum { COV_MAT_SPHERICAL=cv::EM::COV_MAT_SPHERICAL,
+ COV_MAT_DIAGONAL =cv::EM::COV_MAT_DIAGONAL,
+ COV_MAT_GENERIC =cv::EM::COV_MAT_GENERIC };
+
+ // The initial step
+ enum { START_E_STEP=cv::EM::START_E_STEP,
+ START_M_STEP=cv::EM::START_M_STEP,
+ START_AUTO_STEP=cv::EM::START_AUTO_STEP };
+
+ CV_WRAP CvEM();
+ CvEM( const CvMat* samples, const CvMat* sampleIdx=0,
+ CvEMParams params=CvEMParams(), CvMat* labels=0 );
+
+ virtual ~CvEM();
+
+ virtual bool train( const CvMat* samples, const CvMat* sampleIdx=0,
+ CvEMParams params=CvEMParams(), CvMat* labels=0 );
+
+ virtual float predict( const CvMat* sample, CV_OUT CvMat* probs ) const;
+
+ CV_WRAP CvEM( const cv::Mat& samples, const cv::Mat& sampleIdx=cv::Mat(),
+ CvEMParams params=CvEMParams() );
+
+ CV_WRAP virtual bool train( const cv::Mat& samples,
+ const cv::Mat& sampleIdx=cv::Mat(),
+ CvEMParams params=CvEMParams(),
+ CV_OUT cv::Mat* labels=0 );
+
+ CV_WRAP virtual float predict( const cv::Mat& sample, CV_OUT cv::Mat* probs=0 ) const;
+ CV_WRAP virtual double calcLikelihood( const cv::Mat &sample ) const;
+
+ CV_WRAP int getNClusters() const;
+ CV_WRAP cv::Mat getMeans() const;
+ CV_WRAP void getCovs(CV_OUT std::vector<cv::Mat>& covs) const;
+ CV_WRAP cv::Mat getWeights() const;
+ CV_WRAP cv::Mat getProbs() const;
+
+ CV_WRAP inline double getLikelihood() const { return emObj.isTrained() ? logLikelihood : DBL_MAX; }
+
+ CV_WRAP virtual void clear();
+
+ int get_nclusters() const;
+ const CvMat* get_means() const;
+ const CvMat** get_covs() const;
+ const CvMat* get_weights() const;
+ const CvMat* get_probs() const;
+
+ inline double get_log_likelihood() const { return getLikelihood(); }
+
+ virtual void read( CvFileStorage* fs, CvFileNode* node );
+ virtual void write( CvFileStorage* fs, const char* name ) const;
+
+protected:
+ void set_mat_hdrs();
+
+ cv::EM emObj;
+ cv::Mat probs;
+ double logLikelihood;
+
+ CvMat meansHdr;
+ std::vector<CvMat> covsHdrs;
+ std::vector<CvMat*> covsPtrs;
+ CvMat weightsHdr;
+ CvMat probsHdr;
+};
+
+namespace cv
+{
+
+typedef CvEMParams EMParams;
+typedef CvEM ExpectationMaximization;
+
+/*!
+ The Patch Generator class
+ */
+class CV_EXPORTS PatchGenerator
+{
+public:
+ PatchGenerator();
+ PatchGenerator(double _backgroundMin, double _backgroundMax,
+ double _noiseRange, bool _randomBlur=true,
+ double _lambdaMin=0.6, double _lambdaMax=1.5,
+ double _thetaMin=-CV_PI, double _thetaMax=CV_PI,
+ double _phiMin=-CV_PI, double _phiMax=CV_PI );
+ void operator()(const Mat& image, Point2f pt, Mat& patch, Size patchSize, RNG& rng) const;
+ void operator()(const Mat& image, const Mat& transform, Mat& patch,
+ Size patchSize, RNG& rng) const;
+ void warpWholeImage(const Mat& image, Mat& matT, Mat& buf,
+ CV_OUT Mat& warped, int border, RNG& rng) const;
+ void generateRandomTransform(Point2f srcCenter, Point2f dstCenter,
+ CV_OUT Mat& transform, RNG& rng,
+ bool inverse=false) const;
+ void setAffineParam(double lambda, double theta, double phi);
+
+ double backgroundMin, backgroundMax;
+ double noiseRange;
+ bool randomBlur;
+ double lambdaMin, lambdaMax;
+ double thetaMin, thetaMax;
+ double phiMin, phiMax;
+};
+
+
+class CV_EXPORTS LDetector
+{
+public:
+ LDetector();
+ LDetector(int _radius, int _threshold, int _nOctaves,
+ int _nViews, double _baseFeatureSize, double _clusteringDistance);
+ void operator()(const Mat& image,
+ CV_OUT vector<KeyPoint>& keypoints,
+ int maxCount=0, bool scaleCoords=true) const;
+ void operator()(const vector<Mat>& pyr,
+ CV_OUT vector<KeyPoint>& keypoints,
+ int maxCount=0, bool scaleCoords=true) const;
+ void getMostStable2D(const Mat& image, CV_OUT vector<KeyPoint>& keypoints,
+ int maxCount, const PatchGenerator& patchGenerator) const;
+ void setVerbose(bool verbose);
+
+ void read(const FileNode& node);
+ void write(FileStorage& fs, const String& name=String()) const;
+
+ int radius;
+ int threshold;
+ int nOctaves;
+ int nViews;
+ bool verbose;
+
+ double baseFeatureSize;
+ double clusteringDistance;
+};
+
+typedef LDetector YAPE;
+
+class CV_EXPORTS FernClassifier
+{
+public:
+ FernClassifier();
+ FernClassifier(const FileNode& node);
+ FernClassifier(const vector<vector<Point2f> >& points,
+ const vector<Mat>& refimgs,
+ const vector<vector<int> >& labels=vector<vector<int> >(),
+ int _nclasses=0, int _patchSize=PATCH_SIZE,
+ int _signatureSize=DEFAULT_SIGNATURE_SIZE,
+ int _nstructs=DEFAULT_STRUCTS,
+ int _structSize=DEFAULT_STRUCT_SIZE,
+ int _nviews=DEFAULT_VIEWS,
+ int _compressionMethod=COMPRESSION_NONE,
+ const PatchGenerator& patchGenerator=PatchGenerator());
+ virtual ~FernClassifier();
+ virtual void read(const FileNode& n);
+ virtual void write(FileStorage& fs, const String& name=String()) const;
+ virtual void trainFromSingleView(const Mat& image,
+ const vector<KeyPoint>& keypoints,
+ int _patchSize=PATCH_SIZE,
+ int _signatureSize=DEFAULT_SIGNATURE_SIZE,
+ int _nstructs=DEFAULT_STRUCTS,
+ int _structSize=DEFAULT_STRUCT_SIZE,
+ int _nviews=DEFAULT_VIEWS,
+ int _compressionMethod=COMPRESSION_NONE,
+ const PatchGenerator& patchGenerator=PatchGenerator());
+ virtual void train(const vector<vector<Point2f> >& points,
+ const vector<Mat>& refimgs,
+ const vector<vector<int> >& labels=vector<vector<int> >(),
+ int _nclasses=0, int _patchSize=PATCH_SIZE,
+ int _signatureSize=DEFAULT_SIGNATURE_SIZE,
+ int _nstructs=DEFAULT_STRUCTS,
+ int _structSize=DEFAULT_STRUCT_SIZE,
+ int _nviews=DEFAULT_VIEWS,
+ int _compressionMethod=COMPRESSION_NONE,
+ const PatchGenerator& patchGenerator=PatchGenerator());
+ virtual int operator()(const Mat& img, Point2f kpt, vector<float>& signature) const;
+ virtual int operator()(const Mat& patch, vector<float>& signature) const;
+ virtual void clear();
+ virtual bool empty() const;
+ void setVerbose(bool verbose);
+
+ int getClassCount() const;
+ int getStructCount() const;
+ int getStructSize() const;
+ int getSignatureSize() const;
+ int getCompressionMethod() const;
+ Size getPatchSize() const;
+
+ struct Feature
+ {
+ uchar x1, y1, x2, y2;
+ Feature() : x1(0), y1(0), x2(0), y2(0) {}
+ Feature(int _x1, int _y1, int _x2, int _y2)
+ : x1((uchar)_x1), y1((uchar)_y1), x2((uchar)_x2), y2((uchar)_y2)
+ {}
+ template<typename _Tp> bool operator ()(const Mat_<_Tp>& patch) const
+ { return patch(y1,x1) > patch(y2, x2); }
+ };
+
+ enum
+ {
+ PATCH_SIZE = 31,
+ DEFAULT_STRUCTS = 50,
+ DEFAULT_STRUCT_SIZE = 9,
+ DEFAULT_VIEWS = 5000,
+ DEFAULT_SIGNATURE_SIZE = 176,
+ COMPRESSION_NONE = 0,
+ COMPRESSION_RANDOM_PROJ = 1,
+ COMPRESSION_PCA = 2,
+ DEFAULT_COMPRESSION_METHOD = COMPRESSION_NONE
+ };
+
+protected:
+ virtual void prepare(int _nclasses, int _patchSize, int _signatureSize,
+ int _nstructs, int _structSize,
+ int _nviews, int _compressionMethod);
+ virtual void finalize(RNG& rng);
+ virtual int getLeaf(int fidx, const Mat& patch) const;
+
+ bool verbose;
+ int nstructs;
+ int structSize;
+ int nclasses;
+ int signatureSize;
+ int compressionMethod;
+ int leavesPerStruct;
+ Size patchSize;
+ vector<Feature> features;
+ vector<int> classCounters;
+ vector<float> posteriors;
+};
+
+
+/****************************************************************************************\
+ * Calonder Classifier *
+ \****************************************************************************************/
+
+struct RTreeNode;
+
+struct CV_EXPORTS BaseKeypoint
+{
+ int x;
+ int y;
+ IplImage* image;
+
+ BaseKeypoint()
+ : x(0), y(0), image(NULL)
+ {}
+
+ BaseKeypoint(int _x, int _y, IplImage* _image)
+ : x(_x), y(_y), image(_image)
+ {}
+};
+
+class CV_EXPORTS RandomizedTree
+{
+public:
+ friend class RTreeClassifier;
+
+ static const uchar PATCH_SIZE = 32;
+ static const int DEFAULT_DEPTH = 9;
+ static const int DEFAULT_VIEWS = 5000;
+ static const size_t DEFAULT_REDUCED_NUM_DIM = 176;
+ static float GET_LOWER_QUANT_PERC() { return .03f; }
+ static float GET_UPPER_QUANT_PERC() { return .92f; }
+
+ RandomizedTree();
+ ~RandomizedTree();
+
+ void train(vector<BaseKeypoint> const& base_set, RNG &rng,
+ int depth, int views, size_t reduced_num_dim, int num_quant_bits);
+ void train(vector<BaseKeypoint> const& base_set, RNG &rng,
+ PatchGenerator &make_patch, int depth, int views, size_t reduced_num_dim,
+ int num_quant_bits);
+
+ // following two funcs are EXPERIMENTAL (do not use unless you know exactly what you do)
+ static void quantizeVector(float *vec, int dim, int N, float bnds[2], int clamp_mode=0);
+ static void quantizeVector(float *src, int dim, int N, float bnds[2], uchar *dst);
+
+ // patch_data must be a 32x32 array (no row padding)
+ float* getPosterior(uchar* patch_data);
+ const float* getPosterior(uchar* patch_data) const;
+ uchar* getPosterior2(uchar* patch_data);
+ const uchar* getPosterior2(uchar* patch_data) const;
+
+ void read(const char* file_name, int num_quant_bits);
+ void read(std::istream &is, int num_quant_bits);
+ void write(const char* file_name) const;
+ void write(std::ostream &os) const;
+
+ int classes() { return classes_; }
+ int depth() { return depth_; }
+
+ //void setKeepFloatPosteriors(bool b) { keep_float_posteriors_ = b; }
+ void discardFloatPosteriors() { freePosteriors(1); }
+
+ inline void applyQuantization(int num_quant_bits) { makePosteriors2(num_quant_bits); }
+
+ // debug
+ void savePosteriors(std::string url, bool append=false);
+ void savePosteriors2(std::string url, bool append=false);
+
+private:
+ int classes_;
+ int depth_;
+ int num_leaves_;
+ vector<RTreeNode> nodes_;
+ float **posteriors_; // 16-bytes aligned posteriors
+ uchar **posteriors2_; // 16-bytes aligned posteriors
+ vector<int> leaf_counts_;
+
+ void createNodes(int num_nodes, RNG &rng);
+ void allocPosteriorsAligned(int num_leaves, int num_classes);
+ void freePosteriors(int which); // which: 1=posteriors_, 2=posteriors2_, 3=both
+ void init(int classes, int depth, RNG &rng);
+ void addExample(int class_id, uchar* patch_data);
+ void finalize(size_t reduced_num_dim, int num_quant_bits);
+ int getIndex(uchar* patch_data) const;
+ inline float* getPosteriorByIndex(int index);
+ inline const float* getPosteriorByIndex(int index) const;
+ inline uchar* getPosteriorByIndex2(int index);
+ inline const uchar* getPosteriorByIndex2(int index) const;
+ //void makeRandomMeasMatrix(float *cs_phi, PHI_DISTR_TYPE dt, size_t reduced_num_dim);
+ void convertPosteriorsToChar();
+ void makePosteriors2(int num_quant_bits);
+ void compressLeaves(size_t reduced_num_dim);
+ void estimateQuantPercForPosteriors(float perc[2]);
+};
+
+
+inline uchar* getData(IplImage* image)
+{
+ return reinterpret_cast<uchar*>(image->imageData);
+}
+
+inline float* RandomizedTree::getPosteriorByIndex(int index)
+{
+ return const_cast<float*>(const_cast<const RandomizedTree*>(this)->getPosteriorByIndex(index));
+}
+
+inline const float* RandomizedTree::getPosteriorByIndex(int index) const
+{
+ return posteriors_[index];
+}
+
+inline uchar* RandomizedTree::getPosteriorByIndex2(int index)
+{
+ return const_cast<uchar*>(const_cast<const RandomizedTree*>(this)->getPosteriorByIndex2(index));
+}
+
+inline const uchar* RandomizedTree::getPosteriorByIndex2(int index) const
+{
+ return posteriors2_[index];
+}
+
+struct CV_EXPORTS RTreeNode
+{
+ short offset1, offset2;
+
+ RTreeNode() {}
+ RTreeNode(uchar x1, uchar y1, uchar x2, uchar y2)
+ : offset1(y1*RandomizedTree::PATCH_SIZE + x1),
+ offset2(y2*RandomizedTree::PATCH_SIZE + x2)
+ {}
+
+ //! Left child on 0, right child on 1
+ inline bool operator() (uchar* patch_data) const
+ {
+ return patch_data[offset1] > patch_data[offset2];
+ }
+};
+
+class CV_EXPORTS RTreeClassifier
+{
+public:
+ static const int DEFAULT_TREES = 48;
+ static const size_t DEFAULT_NUM_QUANT_BITS = 4;
+
+ RTreeClassifier();
+ void train(vector<BaseKeypoint> const& base_set,
+ RNG &rng,
+ int num_trees = RTreeClassifier::DEFAULT_TREES,
+ int depth = RandomizedTree::DEFAULT_DEPTH,
+ int views = RandomizedTree::DEFAULT_VIEWS,
+ size_t reduced_num_dim = RandomizedTree::DEFAULT_REDUCED_NUM_DIM,
+ int num_quant_bits = DEFAULT_NUM_QUANT_BITS);
+ void train(vector<BaseKeypoint> const& base_set,
+ RNG &rng,
+ PatchGenerator &make_patch,
+ int num_trees = RTreeClassifier::DEFAULT_TREES,
+ int depth = RandomizedTree::DEFAULT_DEPTH,
+ int views = RandomizedTree::DEFAULT_VIEWS,
+ size_t reduced_num_dim = RandomizedTree::DEFAULT_REDUCED_NUM_DIM,
+ int num_quant_bits = DEFAULT_NUM_QUANT_BITS);
+
+ // sig must point to a memory block of at least classes()*sizeof(float|uchar) bytes
+ void getSignature(IplImage *patch, uchar *sig) const;
+ void getSignature(IplImage *patch, float *sig) const;
+ void getSparseSignature(IplImage *patch, float *sig, float thresh) const;
+ // TODO: deprecated in favor of getSignature overload, remove
+ void getFloatSignature(IplImage *patch, float *sig) const { getSignature(patch, sig); }
+
+ static int countNonZeroElements(float *vec, int n, double tol=1e-10);
+ static inline void safeSignatureAlloc(uchar **sig, int num_sig=1, int sig_len=176);
+ static inline uchar* safeSignatureAlloc(int num_sig=1, int sig_len=176);
+
+ inline int classes() const { return classes_; }
+ inline int original_num_classes() const { return original_num_classes_; }
+
+ void setQuantization(int num_quant_bits);
+ void discardFloatPosteriors();
+
+ void read(const char* file_name);
+ void read(std::istream &is);
+ void write(const char* file_name) const;
+ void write(std::ostream &os) const;
+
+ // experimental and debug
+ void saveAllFloatPosteriors(std::string file_url);
+ void saveAllBytePosteriors(std::string file_url);
+ void setFloatPosteriorsFromTextfile_176(std::string url);
+ float countZeroElements();
+
+ vector<RandomizedTree> trees_;
+
+private:
+ int classes_;
+ int num_quant_bits_;
+ mutable uchar **posteriors_;
+ mutable unsigned short *ptemp_;
+ int original_num_classes_;
+ bool keep_floats_;
+};
+
+/****************************************************************************************\
+* One-Way Descriptor *
+\****************************************************************************************/
+
+// CvAffinePose: defines a parameterized affine transformation of an image patch.
+// An image patch is rotated on angle phi (in degrees), then scaled lambda1 times
+// along horizontal and lambda2 times along vertical direction, and then rotated again
+// on angle (theta - phi).
+class CV_EXPORTS CvAffinePose
+{
+public:
+ float phi;
+ float theta;
+ float lambda1;
+ float lambda2;
+};
+
+class CV_EXPORTS OneWayDescriptor
+{
+public:
+ OneWayDescriptor();
+ ~OneWayDescriptor();
+
+ // allocates memory for given descriptor parameters
+ void Allocate(int pose_count, CvSize size, int nChannels);
+
+ // GenerateSamples: generates affine transformed patches with averaging them over small transformation variations.
+ // If external poses and transforms were specified, uses them instead of generating random ones
+ // - pose_count: the number of poses to be generated
+ // - frontal: the input patch (can be a roi in a larger image)
+ // - norm: if nonzero, normalizes the output patch so that the sum of pixel intensities is 1
+ void GenerateSamples(int pose_count, IplImage* frontal, int norm = 0);
+
+ // GenerateSamplesFast: generates affine transformed patches with averaging them over small transformation variations.
+ // Uses precalculated transformed pca components.
+ // - frontal: the input patch (can be a roi in a larger image)
+ // - pca_hr_avg: pca average vector
+ // - pca_hr_eigenvectors: pca eigenvectors
+ // - pca_descriptors: an array of precomputed descriptors of pca components containing their affine transformations
+ // pca_descriptors[0] corresponds to the average, pca_descriptors[1]-pca_descriptors[pca_dim] correspond to eigenvectors
+ void GenerateSamplesFast(IplImage* frontal, CvMat* pca_hr_avg,
+ CvMat* pca_hr_eigenvectors, OneWayDescriptor* pca_descriptors);
+
+ // sets the poses and corresponding transforms
+ void SetTransforms(CvAffinePose* poses, CvMat** transforms);
+
+ // Initialize: builds a descriptor.
+ // - pose_count: the number of poses to build. If poses were set externally, uses them rather than generating random ones
+ // - frontal: input patch. Can be a roi in a larger image
+ // - feature_name: the feature name to be associated with the descriptor
+ // - norm: if 1, the affine transformed patches are normalized so that their sum is 1
+ void Initialize(int pose_count, IplImage* frontal, const char* feature_name = 0, int norm = 0);
+
+ // InitializeFast: builds a descriptor using precomputed descriptors of pca components
+ // - pose_count: the number of poses to build
+ // - frontal: input patch. Can be a roi in a larger image
+ // - feature_name: the feature name to be associated with the descriptor
+ // - pca_hr_avg: average vector for PCA
+ // - pca_hr_eigenvectors: PCA eigenvectors (one vector per row)
+ // - pca_descriptors: precomputed descriptors of PCA components, the first descriptor for the average vector
+ // followed by the descriptors for eigenvectors
+ void InitializeFast(int pose_count, IplImage* frontal, const char* feature_name,
+ CvMat* pca_hr_avg, CvMat* pca_hr_eigenvectors, OneWayDescriptor* pca_descriptors);
+
+ // ProjectPCASample: unwarps an image patch into a vector and projects it into PCA space
+ // - patch: input image patch
+ // - avg: PCA average vector
+ // - eigenvectors: PCA eigenvectors, one per row
+ // - pca_coeffs: output PCA coefficients
+ void ProjectPCASample(IplImage* patch, CvMat* avg, CvMat* eigenvectors, CvMat* pca_coeffs) const;
+
+ // InitializePCACoeffs: projects all warped patches into PCA space
+ // - avg: PCA average vector
+ // - eigenvectors: PCA eigenvectors, one per row
+ void InitializePCACoeffs(CvMat* avg, CvMat* eigenvectors);
+
+ // EstimatePose: finds the closest match between an input patch and a set of patches with different poses
+ // - patch: input image patch
+ // - pose_idx: the output index of the closest pose
+ // - distance: the distance to the closest pose (L2 distance)
+ void EstimatePose(IplImage* patch, int& pose_idx, float& distance) const;
+
+ // EstimatePosePCA: finds the closest match between an input patch and a set of patches with different poses.
+ // The distance between patches is computed in PCA space
+ // - patch: input image patch
+ // - pose_idx: the output index of the closest pose
+ // - distance: distance to the closest pose (L2 distance in PCA space)
+ // - avg: PCA average vector. If 0, matching without PCA is used
+ // - eigenvectors: PCA eigenvectors, one per row
+ void EstimatePosePCA(CvArr* patch, int& pose_idx, float& distance, CvMat* avg, CvMat* eigenvalues) const;
+
+ // GetPatchSize: returns the size of each image patch after warping (2 times smaller than the input patch)
+ CvSize GetPatchSize() const
+ {
+ return m_patch_size;
+ }
+
+ // GetInputPatchSize: returns the required size of the patch that the descriptor is built from
+ // (2 time larger than the patch after warping)
+ CvSize GetInputPatchSize() const
+ {
+ return cvSize(m_patch_size.width*2, m_patch_size.height*2);
+ }
+
+ // GetPatch: returns a patch corresponding to specified pose index
+ // - index: pose index
+ // - return value: the patch corresponding to specified pose index
+ IplImage* GetPatch(int index);
+
+ // GetPose: returns a pose corresponding to specified pose index
+ // - index: pose index
+ // - return value: the pose corresponding to specified pose index
+ CvAffinePose GetPose(int index) const;
+
+ // Save: saves all patches with different poses to a specified path
+ void Save(const char* path);
+
+ // ReadByName: reads a descriptor from a file storage
+ // - fs: file storage
+ // - parent: parent node
+ // - name: node name
+ // - return value: 1 if succeeded, 0 otherwise
+ int ReadByName(CvFileStorage* fs, CvFileNode* parent, const char* name);
+
+ // ReadByName: reads a descriptor from a file node
+ // - parent: parent node
+ // - name: node name
+ // - return value: 1 if succeeded, 0 otherwise
+ int ReadByName(const FileNode &parent, const char* name);
+
+ // Write: writes a descriptor into a file storage
+ // - fs: file storage
+ // - name: node name
+ void Write(CvFileStorage* fs, const char* name);
+
+ // GetFeatureName: returns a name corresponding to a feature
+ const char* GetFeatureName() const;
+
+ // GetCenter: returns the center of the feature
+ CvPoint GetCenter() const;
+
+ void SetPCADimHigh(int pca_dim_high) {m_pca_dim_high = pca_dim_high;};
+ void SetPCADimLow(int pca_dim_low) {m_pca_dim_low = pca_dim_low;};
+
+ int GetPCADimLow() const;
+ int GetPCADimHigh() const;
+
+ CvMat** GetPCACoeffs() const {return m_pca_coeffs;}
+
+protected:
+ int m_pose_count; // the number of poses
+ CvSize m_patch_size; // size of each image
+ IplImage** m_samples; // an array of length m_pose_count containing the patch in different poses
+ IplImage* m_input_patch;
+ IplImage* m_train_patch;
+ CvMat** m_pca_coeffs; // an array of length m_pose_count containing pca decomposition of the patch in different poses
+ CvAffinePose* m_affine_poses; // an array of poses
+ CvMat** m_transforms; // an array of affine transforms corresponding to poses
+
+ string m_feature_name; // the name of the feature associated with the descriptor
+ CvPoint m_center; // the coordinates of the feature (the center of the input image ROI)
+
+ int m_pca_dim_high; // the number of descriptor pca components to use for generating affine poses
+ int m_pca_dim_low; // the number of pca components to use for comparison
+};
+
+
+// OneWayDescriptorBase: encapsulates functionality for training/loading a set of one way descriptors
+// and finding the nearest closest descriptor to an input feature
+class CV_EXPORTS OneWayDescriptorBase
+{
+public:
+
+ // creates an instance of OneWayDescriptor from a set of training files
+ // - patch_size: size of the input (large) patch
+ // - pose_count: the number of poses to generate for each descriptor
+ // - train_path: path to training files
+ // - pca_config: the name of the file that contains PCA for small patches (2 times smaller
+ // than patch_size each dimension
+ // - pca_hr_config: the name of the file that contains PCA for large patches (of patch_size size)
+ // - pca_desc_config: the name of the file that contains descriptors of PCA components
+ OneWayDescriptorBase(CvSize patch_size, int pose_count, const char* train_path = 0, const char* pca_config = 0,
+ const char* pca_hr_config = 0, const char* pca_desc_config = 0, int pyr_levels = 1,
+ int pca_dim_high = 100, int pca_dim_low = 100);
+
+ OneWayDescriptorBase(CvSize patch_size, int pose_count, const string &pca_filename, const string &train_path = string(), const string &images_list = string(),
+ float _scale_min = 0.7f, float _scale_max=1.5f, float _scale_step=1.2f, int pyr_levels = 1,
+ int pca_dim_high = 100, int pca_dim_low = 100);
+
+
+ virtual ~OneWayDescriptorBase();
+ void clear ();
+
+
+ // Allocate: allocates memory for a given number of descriptors
+ void Allocate(int train_feature_count);
+
+ // AllocatePCADescriptors: allocates memory for pca descriptors
+ void AllocatePCADescriptors();
+
+ // returns patch size
+ CvSize GetPatchSize() const {return m_patch_size;};
+ // returns the number of poses for each descriptor
+ int GetPoseCount() const {return m_pose_count;};
+
+ // returns the number of pyramid levels
+ int GetPyrLevels() const {return m_pyr_levels;};
+
+ // returns the number of descriptors
+ int GetDescriptorCount() const {return m_train_feature_count;};
+
+ // CreateDescriptorsFromImage: creates descriptors for each of the input features
+ // - src: input image
+ // - features: input features
+ // - pyr_levels: the number of pyramid levels
+ void CreateDescriptorsFromImage(IplImage* src, const vector<KeyPoint>& features);
+
+ // CreatePCADescriptors: generates descriptors for PCA components, needed for fast generation of feature descriptors
+ void CreatePCADescriptors();
+
+ // returns a feature descriptor by feature index
+ const OneWayDescriptor* GetDescriptor(int desc_idx) const {return &m_descriptors[desc_idx];};
+
+ // FindDescriptor: finds the closest descriptor
+ // - patch: input image patch
+ // - desc_idx: output index of the closest descriptor to the input patch
+ // - pose_idx: output index of the closest pose of the closest descriptor to the input patch
+ // - distance: distance from the input patch to the closest feature pose
+ // - _scales: scales of the input patch for each descriptor
+ // - scale_ranges: input scales variation (float[2])
+ void FindDescriptor(IplImage* patch, int& desc_idx, int& pose_idx, float& distance, float* _scale = 0, float* scale_ranges = 0) const;
+
+ // - patch: input image patch
+ // - n: number of the closest indexes
+ // - desc_idxs: output indexes of the closest descriptor to the input patch (n)
+ // - pose_idx: output indexes of the closest pose of the closest descriptor to the input patch (n)
+ // - distances: distance from the input patch to the closest feature pose (n)
+ // - _scales: scales of the input patch
+ // - scale_ranges: input scales variation (float[2])
+ void FindDescriptor(IplImage* patch, int n, vector<int>& desc_idxs, vector<int>& pose_idxs,
+ vector<float>& distances, vector<float>& _scales, float* scale_ranges = 0) const;
+
+ // FindDescriptor: finds the closest descriptor
+ // - src: input image
+ // - pt: center of the feature
+ // - desc_idx: output index of the closest descriptor to the input patch
+ // - pose_idx: output index of the closest pose of the closest descriptor to the input patch
+ // - distance: distance from the input patch to the closest feature pose
+ void FindDescriptor(IplImage* src, cv::Point2f pt, int& desc_idx, int& pose_idx, float& distance) const;
+
+ // InitializePoses: generates random poses
+ void InitializePoses();
+
+ // InitializeTransformsFromPoses: generates 2x3 affine matrices from poses (initializes m_transforms)
+ void InitializeTransformsFromPoses();
+
+ // InitializePoseTransforms: subsequently calls InitializePoses and InitializeTransformsFromPoses
+ void InitializePoseTransforms();
+
+ // InitializeDescriptor: initializes a descriptor
+ // - desc_idx: descriptor index
+ // - train_image: image patch (ROI is supported)
+ // - feature_label: feature textual label
+ void InitializeDescriptor(int desc_idx, IplImage* train_image, const char* feature_label);
+
+ void InitializeDescriptor(int desc_idx, IplImage* train_image, const KeyPoint& keypoint, const char* feature_label);
+
+ // InitializeDescriptors: load features from an image and create descriptors for each of them
+ void InitializeDescriptors(IplImage* train_image, const vector<KeyPoint>& features,
+ const char* feature_label = "", int desc_start_idx = 0);
+
+ // Write: writes this object to a file storage
+ // - fs: output filestorage
+ void Write (FileStorage &fs) const;
+
+ // Read: reads OneWayDescriptorBase object from a file node
+ // - fn: input file node
+ void Read (const FileNode &fn);
+
+ // LoadPCADescriptors: loads PCA descriptors from a file
+ // - filename: input filename
+ int LoadPCADescriptors(const char* filename);
+
+ // LoadPCADescriptors: loads PCA descriptors from a file node
+ // - fn: input file node
+ int LoadPCADescriptors(const FileNode &fn);
+
+ // SavePCADescriptors: saves PCA descriptors to a file
+ // - filename: output filename
+ void SavePCADescriptors(const char* filename);
+
+ // SavePCADescriptors: saves PCA descriptors to a file storage
+ // - fs: output file storage
+ void SavePCADescriptors(CvFileStorage* fs) const;
+
+ // GeneratePCA: calculate and save PCA components and descriptors
+ // - img_path: path to training PCA images directory
+ // - images_list: filename with filenames of training PCA images
+ void GeneratePCA(const char* img_path, const char* images_list, int pose_count=500);
+
+ // SetPCAHigh: sets the high resolution pca matrices (copied to internal structures)
+ void SetPCAHigh(CvMat* avg, CvMat* eigenvectors);
+
+ // SetPCALow: sets the low resolution pca matrices (copied to internal structures)
+ void SetPCALow(CvMat* avg, CvMat* eigenvectors);
+
+ int GetLowPCA(CvMat** avg, CvMat** eigenvectors)
+ {
+ *avg = m_pca_avg;
+ *eigenvectors = m_pca_eigenvectors;
+ return m_pca_dim_low;
+ };
+
+ int GetPCADimLow() const {return m_pca_dim_low;};
+ int GetPCADimHigh() const {return m_pca_dim_high;};
+
+ void ConvertDescriptorsArrayToTree(); // Converting pca_descriptors array to KD tree
+
+ // GetPCAFilename: get default PCA filename
+ static string GetPCAFilename () { return "pca.yml"; }
+
+ virtual bool empty() const { return m_train_feature_count <= 0 ? true : false; }
+
+protected:
+ CvSize m_patch_size; // patch size
+ int m_pose_count; // the number of poses for each descriptor
+ int m_train_feature_count; // the number of the training features
+ OneWayDescriptor* m_descriptors; // array of train feature descriptors
+ CvMat* m_pca_avg; // PCA average Vector for small patches
+ CvMat* m_pca_eigenvectors; // PCA eigenvectors for small patches
+ CvMat* m_pca_hr_avg; // PCA average Vector for large patches
+ CvMat* m_pca_hr_eigenvectors; // PCA eigenvectors for large patches
+ OneWayDescriptor* m_pca_descriptors; // an array of PCA descriptors
+
+ cv::flann::Index* m_pca_descriptors_tree;
+ CvMat* m_pca_descriptors_matrix;
+
+ CvAffinePose* m_poses; // array of poses
+ CvMat** m_transforms; // array of affine transformations corresponding to poses
+
+ int m_pca_dim_high;
+ int m_pca_dim_low;
+
+ int m_pyr_levels;
+ float scale_min;
+ float scale_max;
+ float scale_step;
+
+ // SavePCAall: saves PCA components and descriptors to a file storage
+ // - fs: output file storage
+ void SavePCAall (FileStorage &fs) const;
+
+ // LoadPCAall: loads PCA components and descriptors from a file node
+ // - fn: input file node
+ void LoadPCAall (const FileNode &fn);
+};
+
+class CV_EXPORTS OneWayDescriptorObject : public OneWayDescriptorBase
+{
+public:
+ // creates an instance of OneWayDescriptorObject from a set of training files
+ // - patch_size: size of the input (large) patch
+ // - pose_count: the number of poses to generate for each descriptor
+ // - train_path: path to training files
+ // - pca_config: the name of the file that contains PCA for small patches (2 times smaller
+ // than patch_size each dimension
+ // - pca_hr_config: the name of the file that contains PCA for large patches (of patch_size size)
+ // - pca_desc_config: the name of the file that contains descriptors of PCA components
+ OneWayDescriptorObject(CvSize patch_size, int pose_count, const char* train_path, const char* pca_config,
+ const char* pca_hr_config = 0, const char* pca_desc_config = 0, int pyr_levels = 1);
+
+ OneWayDescriptorObject(CvSize patch_size, int pose_count, const string &pca_filename,
+ const string &train_path = string (), const string &images_list = string (),
+ float _scale_min = 0.7f, float _scale_max=1.5f, float _scale_step=1.2f, int pyr_levels = 1);
+
+
+ virtual ~OneWayDescriptorObject();
+
+ // Allocate: allocates memory for a given number of features
+ // - train_feature_count: the total number of features
+ // - object_feature_count: the number of features extracted from the object
+ void Allocate(int train_feature_count, int object_feature_count);
+
+
+ void SetLabeledFeatures(const vector<KeyPoint>& features) {m_train_features = features;};
+ vector<KeyPoint>& GetLabeledFeatures() {return m_train_features;};
+ const vector<KeyPoint>& GetLabeledFeatures() const {return m_train_features;};
+ vector<KeyPoint> _GetLabeledFeatures() const;
+
+ // IsDescriptorObject: returns 1 if descriptor with specified index is positive, otherwise 0
+ int IsDescriptorObject(int desc_idx) const;
+
+ // MatchPointToPart: returns the part number of a feature if it matches one of the object parts, otherwise -1
+ int MatchPointToPart(CvPoint pt) const;
+
+ // GetDescriptorPart: returns the part number of the feature corresponding to a specified descriptor
+ // - desc_idx: descriptor index
+ int GetDescriptorPart(int desc_idx) const;
+
+
+ void InitializeObjectDescriptors(IplImage* train_image, const vector<KeyPoint>& features,
+ const char* feature_label, int desc_start_idx = 0, float scale = 1.0f,
+ int is_background = 0);
+
+ // GetObjectFeatureCount: returns the number of object features
+ int GetObjectFeatureCount() const {return m_object_feature_count;};
+
+protected:
+ int* m_part_id; // contains part id for each of object descriptors
+ vector<KeyPoint> m_train_features; // train features
+ int m_object_feature_count; // the number of the positive features
+
+};
+
+
+/*
+ * OneWayDescriptorMatcher
+ */
+class OneWayDescriptorMatcher;
+typedef OneWayDescriptorMatcher OneWayDescriptorMatch;
+
+class CV_EXPORTS OneWayDescriptorMatcher : public GenericDescriptorMatcher
+{
+public:
+ class CV_EXPORTS Params
+ {
+ public:
+ static const int POSE_COUNT = 500;
+ static const int PATCH_WIDTH = 24;
+ static const int PATCH_HEIGHT = 24;
+ static float GET_MIN_SCALE() { return 0.7f; }
+ static float GET_MAX_SCALE() { return 1.5f; }
+ static float GET_STEP_SCALE() { return 1.2f; }
+
+ Params( int poseCount = POSE_COUNT,
+ Size patchSize = Size(PATCH_WIDTH, PATCH_HEIGHT),
+ string pcaFilename = string(),
+ string trainPath = string(), string trainImagesList = string(),
+ float minScale = GET_MIN_SCALE(), float maxScale = GET_MAX_SCALE(),
+ float stepScale = GET_STEP_SCALE() );
+
+ int poseCount;
+ Size patchSize;
+ string pcaFilename;
+ string trainPath;
+ string trainImagesList;
+
+ float minScale, maxScale, stepScale;
+ };
+
+ OneWayDescriptorMatcher( const Params& params=Params() );
+ virtual ~OneWayDescriptorMatcher();
+
+ void initialize( const Params& params, const Ptr<OneWayDescriptorBase>& base=Ptr<OneWayDescriptorBase>() );
+
+ // Clears keypoints storing in collection and OneWayDescriptorBase
+ virtual void clear();
+
+ virtual void train();
+
+ virtual bool isMaskSupported();
+
+ virtual void read( const FileNode &fn );
+ virtual void write( FileStorage& fs ) const;
+
+ virtual bool empty() const;
+
+ virtual Ptr<GenericDescriptorMatcher> clone( bool emptyTrainData=false ) const;
+
+protected:
+ // Matches a set of keypoints from a single image of the training set. A rectangle with a center in a keypoint
+ // and size (patch_width/2*scale, patch_height/2*scale) is cropped from the source image for each
+ // keypoint. scale is iterated from DescriptorOneWayParams::min_scale to DescriptorOneWayParams::max_scale.
+ // The minimum distance to each training patch with all its affine poses is found over all scales.
+ // The class ID of a match is returned for each keypoint. The distance is calculated over PCA components
+ // loaded with DescriptorOneWay::Initialize, kd tree is used for finding minimum distances.
+ virtual void knnMatchImpl( const Mat& queryImage, vector<KeyPoint>& queryKeypoints,
+ vector<vector<DMatch> >& matches, int k,
+ const vector<Mat>& masks, bool compactResult );
+ virtual void radiusMatchImpl( const Mat& queryImage, vector<KeyPoint>& queryKeypoints,
+ vector<vector<DMatch> >& matches, float maxDistance,
+ const vector<Mat>& masks, bool compactResult );
+
+ Ptr<OneWayDescriptorBase> base;
+ Params params;
+ int prevTrainCount;
+};
+
+/*
+ * FernDescriptorMatcher
+ */
+class FernDescriptorMatcher;
+typedef FernDescriptorMatcher FernDescriptorMatch;
+
+class CV_EXPORTS FernDescriptorMatcher : public GenericDescriptorMatcher
+{
+public:
+ class CV_EXPORTS Params
+ {
+ public:
+ Params( int nclasses=0,
+ int patchSize=FernClassifier::PATCH_SIZE,
+ int signatureSize=FernClassifier::DEFAULT_SIGNATURE_SIZE,
+ int nstructs=FernClassifier::DEFAULT_STRUCTS,
+ int structSize=FernClassifier::DEFAULT_STRUCT_SIZE,
+ int nviews=FernClassifier::DEFAULT_VIEWS,
+ int compressionMethod=FernClassifier::COMPRESSION_NONE,
+ const PatchGenerator& patchGenerator=PatchGenerator() );
+
+ Params( const string& filename );
+
+ int nclasses;
+ int patchSize;
+ int signatureSize;
+ int nstructs;
+ int structSize;
+ int nviews;
+ int compressionMethod;
+ PatchGenerator patchGenerator;
+
+ string filename;
+ };
+
+ FernDescriptorMatcher( const Params& params=Params() );
+ virtual ~FernDescriptorMatcher();
+
+ virtual void clear();
+
+ virtual void train();
+
+ virtual bool isMaskSupported();
+
+ virtual void read( const FileNode &fn );
+ virtual void write( FileStorage& fs ) const;
+ virtual bool empty() const;
+
+ virtual Ptr<GenericDescriptorMatcher> clone( bool emptyTrainData=false ) const;
+
+protected:
+ virtual void knnMatchImpl( const Mat& queryImage, vector<KeyPoint>& queryKeypoints,
+ vector<vector<DMatch> >& matches, int k,
+ const vector<Mat>& masks, bool compactResult );
+ virtual void radiusMatchImpl( const Mat& queryImage, vector<KeyPoint>& queryKeypoints,
+ vector<vector<DMatch> >& matches, float maxDistance,
+ const vector<Mat>& masks, bool compactResult );
+
+ void trainFernClassifier();
+ void calcBestProbAndMatchIdx( const Mat& image, const Point2f& pt,
+ float& bestProb, int& bestMatchIdx, vector<float>& signature );
+ Ptr<FernClassifier> classifier;
+ Params params;
+ int prevTrainCount;
+};
+
+
+/*
+ * CalonderDescriptorExtractor
+ */
+template<typename T>
+class CV_EXPORTS CalonderDescriptorExtractor : public DescriptorExtractor
+{
+public:
+ CalonderDescriptorExtractor( const string& classifierFile );
+
+ virtual void read( const FileNode &fn );
+ virtual void write( FileStorage &fs ) const;
+
+ virtual int descriptorSize() const { return classifier_.classes(); }
+ virtual int descriptorType() const { return DataType<T>::type; }
+
+ virtual bool empty() const;
+
+protected:
+ virtual void computeImpl( const Mat& image, vector<KeyPoint>& keypoints, Mat& descriptors ) const;
+
+ RTreeClassifier classifier_;
+ static const int BORDER_SIZE = 16;
+};
+
+template<typename T>
+CalonderDescriptorExtractor<T>::CalonderDescriptorExtractor(const std::string& classifier_file)
+{
+ classifier_.read( classifier_file.c_str() );
+}
+
+template<typename T>
+void CalonderDescriptorExtractor<T>::computeImpl( const Mat& image,
+ vector<KeyPoint>& keypoints,
+ Mat& descriptors) const
+{
+ // Cannot compute descriptors for keypoints on the image border.
+ KeyPointsFilter::runByImageBorder(keypoints, image.size(), BORDER_SIZE);
+
+ /// @todo Check 16-byte aligned
+ descriptors.create((int)keypoints.size(), classifier_.classes(), cv::DataType<T>::type);
+
+ int patchSize = RandomizedTree::PATCH_SIZE;
+ int offset = patchSize / 2;
+ for (size_t i = 0; i < keypoints.size(); ++i)
+ {
+ cv::Point2f pt = keypoints[i].pt;
+ IplImage ipl = image( Rect((int)(pt.x - offset), (int)(pt.y - offset), patchSize, patchSize) );
+ classifier_.getSignature( &ipl, descriptors.ptr<T>((int)i));
+ }
+}
+
+template<typename T>
+void CalonderDescriptorExtractor<T>::read( const FileNode& )
+{}
+
+template<typename T>
+void CalonderDescriptorExtractor<T>::write( FileStorage& ) const
+{}
+
+template<typename T>
+bool CalonderDescriptorExtractor<T>::empty() const
+{
+ return classifier_.trees_.empty();
+}
+
+
+////////////////////// Brute Force Matcher //////////////////////////
+
+template<class Distance>
+class CV_EXPORTS BruteForceMatcher : public BFMatcher
+{
+public:
+ BruteForceMatcher( Distance d = Distance() ) : BFMatcher(Distance::normType, false) {(void)d;}
+ virtual ~BruteForceMatcher() {}
+};
+
+
+/****************************************************************************************\
+* Planar Object Detection *
+\****************************************************************************************/
+
+class CV_EXPORTS PlanarObjectDetector
+{
+public:
+ PlanarObjectDetector();
+ PlanarObjectDetector(const FileNode& node);
+ PlanarObjectDetector(const vector<Mat>& pyr, int _npoints=300,
+ int _patchSize=FernClassifier::PATCH_SIZE,
+ int _nstructs=FernClassifier::DEFAULT_STRUCTS,
+ int _structSize=FernClassifier::DEFAULT_STRUCT_SIZE,
+ int _nviews=FernClassifier::DEFAULT_VIEWS,
+ const LDetector& detector=LDetector(),
+ const PatchGenerator& patchGenerator=PatchGenerator());
+ virtual ~PlanarObjectDetector();
+ virtual void train(const vector<Mat>& pyr, int _npoints=300,
+ int _patchSize=FernClassifier::PATCH_SIZE,
+ int _nstructs=FernClassifier::DEFAULT_STRUCTS,
+ int _structSize=FernClassifier::DEFAULT_STRUCT_SIZE,
+ int _nviews=FernClassifier::DEFAULT_VIEWS,
+ const LDetector& detector=LDetector(),
+ const PatchGenerator& patchGenerator=PatchGenerator());
+ virtual void train(const vector<Mat>& pyr, const vector<KeyPoint>& keypoints,
+ int _patchSize=FernClassifier::PATCH_SIZE,
+ int _nstructs=FernClassifier::DEFAULT_STRUCTS,
+ int _structSize=FernClassifier::DEFAULT_STRUCT_SIZE,
+ int _nviews=FernClassifier::DEFAULT_VIEWS,
+ const LDetector& detector=LDetector(),
+ const PatchGenerator& patchGenerator=PatchGenerator());
+ Rect getModelROI() const;
+ vector<KeyPoint> getModelPoints() const;
+ const LDetector& getDetector() const;
+ const FernClassifier& getClassifier() const;
+ void setVerbose(bool verbose);
+
+ void read(const FileNode& node);
+ void write(FileStorage& fs, const String& name=String()) const;
+ bool operator()(const Mat& image, CV_OUT Mat& H, CV_OUT vector<Point2f>& corners) const;
+ bool operator()(const vector<Mat>& pyr, const vector<KeyPoint>& keypoints,
+ CV_OUT Mat& H, CV_OUT vector<Point2f>& corners,
+ CV_OUT vector<int>* pairs=0) const;
+
+protected:
+ bool verbose;
+ Rect modelROI;
+ vector<KeyPoint> modelPoints;
+ LDetector ldetector;
+ FernClassifier fernClassifier;
+};
+
+}
+
+// 2009-01-12, Xavier Delacour <xavier.delacour@gmail.com>
+
+struct lsh_hash {
+ int h1, h2;
+};
+
+struct CvLSHOperations
+{
+ virtual ~CvLSHOperations() {}
+
+ virtual int vector_add(const void* data) = 0;
+ virtual void vector_remove(int i) = 0;
+ virtual const void* vector_lookup(int i) = 0;
+ virtual void vector_reserve(int n) = 0;
+ virtual unsigned int vector_count() = 0;
+
+ virtual void hash_insert(lsh_hash h, int l, int i) = 0;
+ virtual void hash_remove(lsh_hash h, int l, int i) = 0;
+ virtual int hash_lookup(lsh_hash h, int l, int* ret_i, int ret_i_max) = 0;
+};
+
+#endif
+
+#ifdef __cplusplus
+extern "C" {
+#endif
+
+/* Splits color or grayscale image into multiple connected components
+ of nearly the same color/brightness using modification of Burt algorithm.
+ comp with contain a pointer to sequence (CvSeq)
+ of connected components (CvConnectedComp) */
+CVAPI(void) cvPyrSegmentation( IplImage* src, IplImage* dst,
+ CvMemStorage* storage, CvSeq** comp,
+ int level, double threshold1,
+ double threshold2 );
+
+/****************************************************************************************\
+* Planar subdivisions *
+\****************************************************************************************/
+
+/* Initializes Delaunay triangulation */
+CVAPI(void) cvInitSubdivDelaunay2D( CvSubdiv2D* subdiv, CvRect rect );
+
+/* Creates new subdivision */
+CVAPI(CvSubdiv2D*) cvCreateSubdiv2D( int subdiv_type, int header_size,
+ int vtx_size, int quadedge_size,
+ CvMemStorage* storage );
+
+/************************* high-level subdivision functions ***************************/
+
+/* Simplified Delaunay diagram creation */
+CV_INLINE CvSubdiv2D* cvCreateSubdivDelaunay2D( CvRect rect, CvMemStorage* storage )
+{
+ CvSubdiv2D* subdiv = cvCreateSubdiv2D( CV_SEQ_KIND_SUBDIV2D, sizeof(*subdiv),
+ sizeof(CvSubdiv2DPoint), sizeof(CvQuadEdge2D), storage );
+
+ cvInitSubdivDelaunay2D( subdiv, rect );
+ return subdiv;
+}
+
+
+/* Inserts new point to the Delaunay triangulation */
+CVAPI(CvSubdiv2DPoint*) cvSubdivDelaunay2DInsert( CvSubdiv2D* subdiv, CvPoint2D32f pt);
+
+/* Locates a point within the Delaunay triangulation (finds the edge
+ the point is left to or belongs to, or the triangulation point the given
+ point coinsides with */
+CVAPI(CvSubdiv2DPointLocation) cvSubdiv2DLocate(
+ CvSubdiv2D* subdiv, CvPoint2D32f pt,
+ CvSubdiv2DEdge* edge,
+ CvSubdiv2DPoint** vertex CV_DEFAULT(NULL) );
+
+/* Calculates Voronoi tesselation (i.e. coordinates of Voronoi points) */
+CVAPI(void) cvCalcSubdivVoronoi2D( CvSubdiv2D* subdiv );
+
+
+/* Removes all Voronoi points from the tesselation */
+CVAPI(void) cvClearSubdivVoronoi2D( CvSubdiv2D* subdiv );
+
+
+/* Finds the nearest to the given point vertex in subdivision. */
+CVAPI(CvSubdiv2DPoint*) cvFindNearestPoint2D( CvSubdiv2D* subdiv, CvPoint2D32f pt );
+
+
+/************ Basic quad-edge navigation and operations ************/
+
+CV_INLINE CvSubdiv2DEdge cvSubdiv2DNextEdge( CvSubdiv2DEdge edge )
+{
+ return CV_SUBDIV2D_NEXT_EDGE(edge);
+}
+
+
+CV_INLINE CvSubdiv2DEdge cvSubdiv2DRotateEdge( CvSubdiv2DEdge edge, int rotate )
+{
+ return (edge & ~3) + ((edge + rotate) & 3);
+}
+
+CV_INLINE CvSubdiv2DEdge cvSubdiv2DSymEdge( CvSubdiv2DEdge edge )
+{
+ return edge ^ 2;
+}
+
+CV_INLINE CvSubdiv2DEdge cvSubdiv2DGetEdge( CvSubdiv2DEdge edge, CvNextEdgeType type )
+{
+ CvQuadEdge2D* e = (CvQuadEdge2D*)(edge & ~3);
+ edge = e->next[(edge + (int)type) & 3];
+ return (edge & ~3) + ((edge + ((int)type >> 4)) & 3);
+}
+
+
+CV_INLINE CvSubdiv2DPoint* cvSubdiv2DEdgeOrg( CvSubdiv2DEdge edge )
+{
+ CvQuadEdge2D* e = (CvQuadEdge2D*)(edge & ~3);
+ return (CvSubdiv2DPoint*)e->pt[edge & 3];
+}
+
+
+CV_INLINE CvSubdiv2DPoint* cvSubdiv2DEdgeDst( CvSubdiv2DEdge edge )
+{
+ CvQuadEdge2D* e = (CvQuadEdge2D*)(edge & ~3);
+ return (CvSubdiv2DPoint*)e->pt[(edge + 2) & 3];
+}
+
+/****************************************************************************************\
+* Additional operations on Subdivisions *
+\****************************************************************************************/
+
+// paints voronoi diagram: just demo function
+CVAPI(void) icvDrawMosaic( CvSubdiv2D* subdiv, IplImage* src, IplImage* dst );
+
+// checks planar subdivision for correctness. It is not an absolute check,
+// but it verifies some relations between quad-edges
+CVAPI(int) icvSubdiv2DCheck( CvSubdiv2D* subdiv );
+
+// returns squared distance between two 2D points with floating-point coordinates.
+CV_INLINE double icvSqDist2D32f( CvPoint2D32f pt1, CvPoint2D32f pt2 )
+{
+ double dx = pt1.x - pt2.x;
+ double dy = pt1.y - pt2.y;
+
+ return dx*dx + dy*dy;
+}
+
+
+
+
+CV_INLINE double cvTriangleArea( CvPoint2D32f a, CvPoint2D32f b, CvPoint2D32f c )
+{
+ return ((double)b.x - a.x) * ((double)c.y - a.y) - ((double)b.y - a.y) * ((double)c.x - a.x);
+}
+
+
+/* Constructs kd-tree from set of feature descriptors */
+CVAPI(struct CvFeatureTree*) cvCreateKDTree(CvMat* desc);
+
+/* Constructs spill-tree from set of feature descriptors */
+CVAPI(struct CvFeatureTree*) cvCreateSpillTree( const CvMat* raw_data,
+ const int naive CV_DEFAULT(50),
+ const double rho CV_DEFAULT(.7),
+ const double tau CV_DEFAULT(.1) );
+
+/* Release feature tree */
+CVAPI(void) cvReleaseFeatureTree(struct CvFeatureTree* tr);
+
+/* Searches feature tree for k nearest neighbors of given reference points,
+ searching (in case of kd-tree/bbf) at most emax leaves. */
+CVAPI(void) cvFindFeatures(struct CvFeatureTree* tr, const CvMat* query_points,
+ CvMat* indices, CvMat* dist, int k, int emax CV_DEFAULT(20));
+
+/* Search feature tree for all points that are inlier to given rect region.
+ Only implemented for kd trees */
+CVAPI(int) cvFindFeaturesBoxed(struct CvFeatureTree* tr,
+ CvMat* bounds_min, CvMat* bounds_max,
+ CvMat* out_indices);
+
+
+/* Construct a Locality Sensitive Hash (LSH) table, for indexing d-dimensional vectors of
+ given type. Vectors will be hashed L times with k-dimensional p-stable (p=2) functions. */
+CVAPI(struct CvLSH*) cvCreateLSH(struct CvLSHOperations* ops, int d,
+ int L CV_DEFAULT(10), int k CV_DEFAULT(10),
+ int type CV_DEFAULT(CV_64FC1), double r CV_DEFAULT(4),
+ int64 seed CV_DEFAULT(-1));
+
+/* Construct in-memory LSH table, with n bins. */
+CVAPI(struct CvLSH*) cvCreateMemoryLSH(int d, int n, int L CV_DEFAULT(10), int k CV_DEFAULT(10),
+ int type CV_DEFAULT(CV_64FC1), double r CV_DEFAULT(4),
+ int64 seed CV_DEFAULT(-1));
+
+/* Free the given LSH structure. */
+CVAPI(void) cvReleaseLSH(struct CvLSH** lsh);
+
+/* Return the number of vectors in the LSH. */
+CVAPI(unsigned int) LSHSize(struct CvLSH* lsh);
+
+/* Add vectors to the LSH structure, optionally returning indices. */
+CVAPI(void) cvLSHAdd(struct CvLSH* lsh, const CvMat* data, CvMat* indices CV_DEFAULT(0));
+
+/* Remove vectors from LSH, as addressed by given indices. */
+CVAPI(void) cvLSHRemove(struct CvLSH* lsh, const CvMat* indices);
+
+/* Query the LSH n times for at most k nearest points; data is n x d,
+ indices and dist are n x k. At most emax stored points will be accessed. */
+CVAPI(void) cvLSHQuery(struct CvLSH* lsh, const CvMat* query_points,
+ CvMat* indices, CvMat* dist, int k, int emax);
+
+/* Kolmogorov-Zabin stereo-correspondence algorithm (a.k.a. KZ1) */
+#define CV_STEREO_GC_OCCLUDED SHRT_MAX
+
+typedef struct CvStereoGCState
+{
+ int Ithreshold;
+ int interactionRadius;
+ float K, lambda, lambda1, lambda2;
+ int occlusionCost;
+ int minDisparity;
+ int numberOfDisparities;
+ int maxIters;
+
+ CvMat* left;
+ CvMat* right;
+ CvMat* dispLeft;
+ CvMat* dispRight;
+ CvMat* ptrLeft;
+ CvMat* ptrRight;
+ CvMat* vtxBuf;
+ CvMat* edgeBuf;
+} CvStereoGCState;
+
+CVAPI(CvStereoGCState*) cvCreateStereoGCState( int numberOfDisparities, int maxIters );
+CVAPI(void) cvReleaseStereoGCState( CvStereoGCState** state );
+
+CVAPI(void) cvFindStereoCorrespondenceGC( const CvArr* left, const CvArr* right,
+ CvArr* disparityLeft, CvArr* disparityRight,
+ CvStereoGCState* state,
+ int useDisparityGuess CV_DEFAULT(0) );
+
+/* Calculates optical flow for 2 images using classical Lucas & Kanade algorithm */
+CVAPI(void) cvCalcOpticalFlowLK( const CvArr* prev, const CvArr* curr,
+ CvSize win_size, CvArr* velx, CvArr* vely );
+
+/* Calculates optical flow for 2 images using block matching algorithm */
+CVAPI(void) cvCalcOpticalFlowBM( const CvArr* prev, const CvArr* curr,
+ CvSize block_size, CvSize shift_size,
+ CvSize max_range, int use_previous,
+ CvArr* velx, CvArr* vely );
+
+/* Calculates Optical flow for 2 images using Horn & Schunck algorithm */
+CVAPI(void) cvCalcOpticalFlowHS( const CvArr* prev, const CvArr* curr,
+ int use_previous, CvArr* velx, CvArr* vely,
+ double lambda, CvTermCriteria criteria );
+
+
+/****************************************************************************************\
+* Background/foreground segmentation *
+\****************************************************************************************/
+
+/* We discriminate between foreground and background pixels
+ * by building and maintaining a model of the background.
+ * Any pixel which does not fit this model is then deemed
+ * to be foreground.
+ *
+ * At present we support two core background models,
+ * one of which has two variations:
+ *
+ * o CV_BG_MODEL_FGD: latest and greatest algorithm, described in
+ *
+ * Foreground Object Detection from Videos Containing Complex Background.
+ * Liyuan Li, Weimin Huang, Irene Y.H. Gu, and Qi Tian.
+ * ACM MM2003 9p
+ *
+ * o CV_BG_MODEL_FGD_SIMPLE:
+ * A code comment describes this as a simplified version of the above,
+ * but the code is in fact currently identical
+ *
+ * o CV_BG_MODEL_MOG: "Mixture of Gaussians", older algorithm, described in
+ *
+ * Moving target classification and tracking from real-time video.
+ * A Lipton, H Fujijoshi, R Patil
+ * Proceedings IEEE Workshop on Application of Computer Vision pp 8-14 1998
+ *
+ * Learning patterns of activity using real-time tracking
+ * C Stauffer and W Grimson August 2000
+ * IEEE Transactions on Pattern Analysis and Machine Intelligence 22(8):747-757
+ */
+
+
+#define CV_BG_MODEL_FGD 0
+#define CV_BG_MODEL_MOG 1 /* "Mixture of Gaussians". */
+#define CV_BG_MODEL_FGD_SIMPLE 2
+
+struct CvBGStatModel;
+
+typedef void (CV_CDECL * CvReleaseBGStatModel)( struct CvBGStatModel** bg_model );
+typedef int (CV_CDECL * CvUpdateBGStatModel)( IplImage* curr_frame, struct CvBGStatModel* bg_model,
+ double learningRate );
+
+#define CV_BG_STAT_MODEL_FIELDS() \
+int type; /*type of BG model*/ \
+CvReleaseBGStatModel release; \
+CvUpdateBGStatModel update; \
+IplImage* background; /*8UC3 reference background image*/ \
+IplImage* foreground; /*8UC1 foreground image*/ \
+IplImage** layers; /*8UC3 reference background image, can be null */ \
+int layer_count; /* can be zero */ \
+CvMemStorage* storage; /*storage for foreground_regions*/ \
+CvSeq* foreground_regions /*foreground object contours*/
+
+typedef struct CvBGStatModel
+{
+ CV_BG_STAT_MODEL_FIELDS();
+} CvBGStatModel;
+
+//
+
+// Releases memory used by BGStatModel
+CVAPI(void) cvReleaseBGStatModel( CvBGStatModel** bg_model );
+
+// Updates statistical model and returns number of found foreground regions
+CVAPI(int) cvUpdateBGStatModel( IplImage* current_frame, CvBGStatModel* bg_model,
+ double learningRate CV_DEFAULT(-1));
+
+// Performs FG post-processing using segmentation
+// (all pixels of a region will be classified as foreground if majority of pixels of the region are FG).
+// parameters:
+// segments - pointer to result of segmentation (for example MeanShiftSegmentation)
+// bg_model - pointer to CvBGStatModel structure
+CVAPI(void) cvRefineForegroundMaskBySegm( CvSeq* segments, CvBGStatModel* bg_model );
+
+/* Common use change detection function */
+CVAPI(int) cvChangeDetection( IplImage* prev_frame,
+ IplImage* curr_frame,
+ IplImage* change_mask );
+
+/*
+ Interface of ACM MM2003 algorithm
+ */
+
+/* Default parameters of foreground detection algorithm: */
+#define CV_BGFG_FGD_LC 128
+#define CV_BGFG_FGD_N1C 15
+#define CV_BGFG_FGD_N2C 25
+
+#define CV_BGFG_FGD_LCC 64
+#define CV_BGFG_FGD_N1CC 25
+#define CV_BGFG_FGD_N2CC 40
+
+/* Background reference image update parameter: */
+#define CV_BGFG_FGD_ALPHA_1 0.1f
+
+/* stat model update parameter
+ * 0.002f ~ 1K frame(~45sec), 0.005 ~ 18sec (if 25fps and absolutely static BG)
+ */
+#define CV_BGFG_FGD_ALPHA_2 0.005f
+
+/* start value for alpha parameter (to fast initiate statistic model) */
+#define CV_BGFG_FGD_ALPHA_3 0.1f
+
+#define CV_BGFG_FGD_DELTA 2
+
+#define CV_BGFG_FGD_T 0.9f
+
+#define CV_BGFG_FGD_MINAREA 15.f
+
+#define CV_BGFG_FGD_BG_UPDATE_TRESH 0.5f
+
+/* See the above-referenced Li/Huang/Gu/Tian paper
+ * for a full description of these background-model
+ * tuning parameters.
+ *
+ * Nomenclature: 'c' == "color", a three-component red/green/blue vector.
+ * We use histograms of these to model the range of
+ * colors we've seen at a given background pixel.
+ *
+ * 'cc' == "color co-occurrence", a six-component vector giving
+ * RGB color for both this frame and preceding frame.
+ * We use histograms of these to model the range of
+ * color CHANGES we've seen at a given background pixel.
+ */
+typedef struct CvFGDStatModelParams
+{
+ int Lc; /* Quantized levels per 'color' component. Power of two, typically 32, 64 or 128. */
+ int N1c; /* Number of color vectors used to model normal background color variation at a given pixel. */
+ int N2c; /* Number of color vectors retained at given pixel. Must be > N1c, typically ~ 5/3 of N1c. */
+ /* Used to allow the first N1c vectors to adapt over time to changing background. */
+
+ int Lcc; /* Quantized levels per 'color co-occurrence' component. Power of two, typically 16, 32 or 64. */
+ int N1cc; /* Number of color co-occurrence vectors used to model normal background color variation at a given pixel. */
+ int N2cc; /* Number of color co-occurrence vectors retained at given pixel. Must be > N1cc, typically ~ 5/3 of N1cc. */
+ /* Used to allow the first N1cc vectors to adapt over time to changing background. */
+
+ int is_obj_without_holes;/* If TRUE we ignore holes within foreground blobs. Defaults to TRUE. */
+ int perform_morphing; /* Number of erode-dilate-erode foreground-blob cleanup iterations. */
+ /* These erase one-pixel junk blobs and merge almost-touching blobs. Default value is 1. */
+
+ float alpha1; /* How quickly we forget old background pixel values seen. Typically set to 0.1 */
+ float alpha2; /* "Controls speed of feature learning". Depends on T. Typical value circa 0.005. */
+ float alpha3; /* Alternate to alpha2, used (e.g.) for quicker initial convergence. Typical value 0.1. */
+
+ float delta; /* Affects color and color co-occurrence quantization, typically set to 2. */
+ float T; /* "A percentage value which determines when new features can be recognized as new background." (Typically 0.9).*/
+ float minArea; /* Discard foreground blobs whose bounding box is smaller than this threshold. */
+} CvFGDStatModelParams;
+
+typedef struct CvBGPixelCStatTable
+{
+ float Pv, Pvb;
+ uchar v[3];
+} CvBGPixelCStatTable;
+
+typedef struct CvBGPixelCCStatTable
+{
+ float Pv, Pvb;
+ uchar v[6];
+} CvBGPixelCCStatTable;
+
+typedef struct CvBGPixelStat
+{
+ float Pbc;
+ float Pbcc;
+ CvBGPixelCStatTable* ctable;
+ CvBGPixelCCStatTable* cctable;
+ uchar is_trained_st_model;
+ uchar is_trained_dyn_model;
+} CvBGPixelStat;
+
+
+typedef struct CvFGDStatModel
+{
+ CV_BG_STAT_MODEL_FIELDS();
+ CvBGPixelStat* pixel_stat;
+ IplImage* Ftd;
+ IplImage* Fbd;
+ IplImage* prev_frame;
+ CvFGDStatModelParams params;
+} CvFGDStatModel;
+
+/* Creates FGD model */
+CVAPI(CvBGStatModel*) cvCreateFGDStatModel( IplImage* first_frame,
+ CvFGDStatModelParams* parameters CV_DEFAULT(NULL));
+
+/*
+ Interface of Gaussian mixture algorithm
+
+ "An improved adaptive background mixture model for real-time tracking with shadow detection"
+ P. KadewTraKuPong and R. Bowden,
+ Proc. 2nd European Workshp on Advanced Video-Based Surveillance Systems, 2001."
+ http://personal.ee.surrey.ac.uk/Personal/R.Bowden/publications/avbs01/avbs01.pdf
+ */
+
+/* Note: "MOG" == "Mixture Of Gaussians": */
+
+#define CV_BGFG_MOG_MAX_NGAUSSIANS 500
+
+/* default parameters of gaussian background detection algorithm */
+#define CV_BGFG_MOG_BACKGROUND_THRESHOLD 0.7 /* threshold sum of weights for background test */
+#define CV_BGFG_MOG_STD_THRESHOLD 2.5 /* lambda=2.5 is 99% */
+#define CV_BGFG_MOG_WINDOW_SIZE 200 /* Learning rate; alpha = 1/CV_GBG_WINDOW_SIZE */
+#define CV_BGFG_MOG_NGAUSSIANS 5 /* = K = number of Gaussians in mixture */
+#define CV_BGFG_MOG_WEIGHT_INIT 0.05
+#define CV_BGFG_MOG_SIGMA_INIT 30
+#define CV_BGFG_MOG_MINAREA 15.f
+
+
+#define CV_BGFG_MOG_NCOLORS 3
+
+typedef struct CvGaussBGStatModelParams
+{
+ int win_size; /* = 1/alpha */
+ int n_gauss;
+ double bg_threshold, std_threshold, minArea;
+ double weight_init, variance_init;
+}CvGaussBGStatModelParams;
+
+typedef struct CvGaussBGValues
+{
+ int match_sum;
+ double weight;
+ double variance[CV_BGFG_MOG_NCOLORS];
+ double mean[CV_BGFG_MOG_NCOLORS];
+} CvGaussBGValues;
+
+typedef struct CvGaussBGPoint
+{
+ CvGaussBGValues* g_values;
+} CvGaussBGPoint;
+
+
+typedef struct CvGaussBGModel
+{
+ CV_BG_STAT_MODEL_FIELDS();
+ CvGaussBGStatModelParams params;
+ CvGaussBGPoint* g_point;
+ int countFrames;
+ void* mog;
+} CvGaussBGModel;
+
+
+/* Creates Gaussian mixture background model */
+CVAPI(CvBGStatModel*) cvCreateGaussianBGModel( IplImage* first_frame,
+ CvGaussBGStatModelParams* parameters CV_DEFAULT(NULL));
+
+
+typedef struct CvBGCodeBookElem
+{
+ struct CvBGCodeBookElem* next;
+ int tLastUpdate;
+ int stale;
+ uchar boxMin[3];
+ uchar boxMax[3];
+ uchar learnMin[3];
+ uchar learnMax[3];
+} CvBGCodeBookElem;
+
+typedef struct CvBGCodeBookModel
+{
+ CvSize size;
+ int t;
+ uchar cbBounds[3];
+ uchar modMin[3];
+ uchar modMax[3];
+ CvBGCodeBookElem** cbmap;
+ CvMemStorage* storage;
+ CvBGCodeBookElem* freeList;
+} CvBGCodeBookModel;
+
+CVAPI(CvBGCodeBookModel*) cvCreateBGCodeBookModel( void );
+CVAPI(void) cvReleaseBGCodeBookModel( CvBGCodeBookModel** model );
+
+CVAPI(void) cvBGCodeBookUpdate( CvBGCodeBookModel* model, const CvArr* image,
+ CvRect roi CV_DEFAULT(cvRect(0,0,0,0)),
+ const CvArr* mask CV_DEFAULT(0) );
+
+CVAPI(int) cvBGCodeBookDiff( const CvBGCodeBookModel* model, const CvArr* image,
+ CvArr* fgmask, CvRect roi CV_DEFAULT(cvRect(0,0,0,0)) );
+
+CVAPI(void) cvBGCodeBookClearStale( CvBGCodeBookModel* model, int staleThresh,
+ CvRect roi CV_DEFAULT(cvRect(0,0,0,0)),
+ const CvArr* mask CV_DEFAULT(0) );
+
+CVAPI(CvSeq*) cvSegmentFGMask( CvArr *fgmask, int poly1Hull0 CV_DEFAULT(1),
+ float perimScale CV_DEFAULT(4.f),
+ CvMemStorage* storage CV_DEFAULT(0),
+ CvPoint offset CV_DEFAULT(cvPoint(0,0)));
+
+#ifdef __cplusplus
+}
+#endif
+
+#endif
+
+/* End of file. */