summaryrefslogtreecommitdiff
path: root/2.3-1/thirdparty/includes/OpenCV/opencv2/gpu/device/vec_distance.hpp
diff options
context:
space:
mode:
Diffstat (limited to '2.3-1/thirdparty/includes/OpenCV/opencv2/gpu/device/vec_distance.hpp')
-rw-r--r--2.3-1/thirdparty/includes/OpenCV/opencv2/gpu/device/vec_distance.hpp224
1 files changed, 224 insertions, 0 deletions
diff --git a/2.3-1/thirdparty/includes/OpenCV/opencv2/gpu/device/vec_distance.hpp b/2.3-1/thirdparty/includes/OpenCV/opencv2/gpu/device/vec_distance.hpp
new file mode 100644
index 00000000..d5b4bb20
--- /dev/null
+++ b/2.3-1/thirdparty/includes/OpenCV/opencv2/gpu/device/vec_distance.hpp
@@ -0,0 +1,224 @@
+/*M///////////////////////////////////////////////////////////////////////////////////////
+//
+// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
+//
+// By downloading, copying, installing or using the software you agree to this license.
+// If you do not agree to this license, do not download, install,
+// copy or use the software.
+//
+//
+// License Agreement
+// For Open Source Computer Vision Library
+//
+// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
+// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
+// Third party copyrights are property of their respective owners.
+//
+// Redistribution and use in source and binary forms, with or without modification,
+// are permitted provided that the following conditions are met:
+//
+// * Redistribution's of source code must retain the above copyright notice,
+// this list of conditions and the following disclaimer.
+//
+// * Redistribution's in binary form must reproduce the above copyright notice,
+// this list of conditions and the following disclaimer in the documentation
+// and/or other materials provided with the distribution.
+//
+// * The name of the copyright holders may not be used to endorse or promote products
+// derived from this software without specific prior written permission.
+//
+// This software is provided by the copyright holders and contributors "as is" and
+// any express or implied warranties, including, but not limited to, the implied
+// warranties of merchantability and fitness for a particular purpose are disclaimed.
+// In no event shall the Intel Corporation or contributors be liable for any direct,
+// indirect, incidental, special, exemplary, or consequential damages
+// (including, but not limited to, procurement of substitute goods or services;
+// loss of use, data, or profits; or business interruption) however caused
+// and on any theory of liability, whether in contract, strict liability,
+// or tort (including negligence or otherwise) arising in any way out of
+// the use of this software, even if advised of the possibility of such damage.
+//
+//M*/
+
+#ifndef __OPENCV_GPU_VEC_DISTANCE_HPP__
+#define __OPENCV_GPU_VEC_DISTANCE_HPP__
+
+#include "reduce.hpp"
+#include "functional.hpp"
+#include "detail/vec_distance_detail.hpp"
+
+namespace cv { namespace gpu { namespace device
+{
+ template <typename T> struct L1Dist
+ {
+ typedef int value_type;
+ typedef int result_type;
+
+ __device__ __forceinline__ L1Dist() : mySum(0) {}
+
+ __device__ __forceinline__ void reduceIter(int val1, int val2)
+ {
+ mySum = __sad(val1, val2, mySum);
+ }
+
+ template <int THREAD_DIM> __device__ __forceinline__ void reduceAll(int* smem, int tid)
+ {
+ reduce<THREAD_DIM>(smem, mySum, tid, plus<int>());
+ }
+
+ __device__ __forceinline__ operator int() const
+ {
+ return mySum;
+ }
+
+ int mySum;
+ };
+ template <> struct L1Dist<float>
+ {
+ typedef float value_type;
+ typedef float result_type;
+
+ __device__ __forceinline__ L1Dist() : mySum(0.0f) {}
+
+ __device__ __forceinline__ void reduceIter(float val1, float val2)
+ {
+ mySum += ::fabs(val1 - val2);
+ }
+
+ template <int THREAD_DIM> __device__ __forceinline__ void reduceAll(float* smem, int tid)
+ {
+ reduce<THREAD_DIM>(smem, mySum, tid, plus<float>());
+ }
+
+ __device__ __forceinline__ operator float() const
+ {
+ return mySum;
+ }
+
+ float mySum;
+ };
+
+ struct L2Dist
+ {
+ typedef float value_type;
+ typedef float result_type;
+
+ __device__ __forceinline__ L2Dist() : mySum(0.0f) {}
+
+ __device__ __forceinline__ void reduceIter(float val1, float val2)
+ {
+ float reg = val1 - val2;
+ mySum += reg * reg;
+ }
+
+ template <int THREAD_DIM> __device__ __forceinline__ void reduceAll(float* smem, int tid)
+ {
+ reduce<THREAD_DIM>(smem, mySum, tid, plus<float>());
+ }
+
+ __device__ __forceinline__ operator float() const
+ {
+ return sqrtf(mySum);
+ }
+
+ float mySum;
+ };
+
+ struct HammingDist
+ {
+ typedef int value_type;
+ typedef int result_type;
+
+ __device__ __forceinline__ HammingDist() : mySum(0) {}
+
+ __device__ __forceinline__ void reduceIter(int val1, int val2)
+ {
+ mySum += __popc(val1 ^ val2);
+ }
+
+ template <int THREAD_DIM> __device__ __forceinline__ void reduceAll(int* smem, int tid)
+ {
+ reduce<THREAD_DIM>(smem, mySum, tid, plus<int>());
+ }
+
+ __device__ __forceinline__ operator int() const
+ {
+ return mySum;
+ }
+
+ int mySum;
+ };
+
+ // calc distance between two vectors in global memory
+ template <int THREAD_DIM, typename Dist, typename T1, typename T2>
+ __device__ void calcVecDiffGlobal(const T1* vec1, const T2* vec2, int len, Dist& dist, typename Dist::result_type* smem, int tid)
+ {
+ for (int i = tid; i < len; i += THREAD_DIM)
+ {
+ T1 val1;
+ ForceGlob<T1>::Load(vec1, i, val1);
+
+ T2 val2;
+ ForceGlob<T2>::Load(vec2, i, val2);
+
+ dist.reduceIter(val1, val2);
+ }
+
+ dist.reduceAll<THREAD_DIM>(smem, tid);
+ }
+
+ // calc distance between two vectors, first vector is cached in register or shared memory, second vector is in global memory
+ template <int THREAD_DIM, int MAX_LEN, bool LEN_EQ_MAX_LEN, typename Dist, typename T1, typename T2>
+ __device__ __forceinline__ void calcVecDiffCached(const T1* vecCached, const T2* vecGlob, int len, Dist& dist, typename Dist::result_type* smem, int tid)
+ {
+ vec_distance_detail::VecDiffCachedCalculator<THREAD_DIM, MAX_LEN, LEN_EQ_MAX_LEN>::calc(vecCached, vecGlob, len, dist, tid);
+
+ dist.reduceAll<THREAD_DIM>(smem, tid);
+ }
+
+ // calc distance between two vectors in global memory
+ template <int THREAD_DIM, typename T1> struct VecDiffGlobal
+ {
+ explicit __device__ __forceinline__ VecDiffGlobal(const T1* vec1_, int = 0, void* = 0, int = 0, int = 0)
+ {
+ vec1 = vec1_;
+ }
+
+ template <typename T2, typename Dist>
+ __device__ __forceinline__ void calc(const T2* vec2, int len, Dist& dist, typename Dist::result_type* smem, int tid) const
+ {
+ calcVecDiffGlobal<THREAD_DIM>(vec1, vec2, len, dist, smem, tid);
+ }
+
+ const T1* vec1;
+ };
+
+ // calc distance between two vectors, first vector is cached in register memory, second vector is in global memory
+ template <int THREAD_DIM, int MAX_LEN, bool LEN_EQ_MAX_LEN, typename U> struct VecDiffCachedRegister
+ {
+ template <typename T1> __device__ __forceinline__ VecDiffCachedRegister(const T1* vec1, int len, U* smem, int glob_tid, int tid)
+ {
+ if (glob_tid < len)
+ smem[glob_tid] = vec1[glob_tid];
+ __syncthreads();
+
+ U* vec1ValsPtr = vec1Vals;
+
+ #pragma unroll
+ for (int i = tid; i < MAX_LEN; i += THREAD_DIM)
+ *vec1ValsPtr++ = smem[i];
+
+ __syncthreads();
+ }
+
+ template <typename T2, typename Dist>
+ __device__ __forceinline__ void calc(const T2* vec2, int len, Dist& dist, typename Dist::result_type* smem, int tid) const
+ {
+ calcVecDiffCached<THREAD_DIM, MAX_LEN, LEN_EQ_MAX_LEN>(vec1Vals, vec2, len, dist, smem, tid);
+ }
+
+ U vec1Vals[MAX_LEN / THREAD_DIM];
+ };
+}}} // namespace cv { namespace gpu { namespace device
+
+#endif // __OPENCV_GPU_VEC_DISTANCE_HPP__