diff options
Diffstat (limited to '2.3-1/thirdparty/includes/OpenCV/opencv2/flann/flann.hpp')
-rw-r--r-- | 2.3-1/thirdparty/includes/OpenCV/opencv2/flann/flann.hpp | 427 |
1 files changed, 427 insertions, 0 deletions
diff --git a/2.3-1/thirdparty/includes/OpenCV/opencv2/flann/flann.hpp b/2.3-1/thirdparty/includes/OpenCV/opencv2/flann/flann.hpp new file mode 100644 index 00000000..d053488e --- /dev/null +++ b/2.3-1/thirdparty/includes/OpenCV/opencv2/flann/flann.hpp @@ -0,0 +1,427 @@ +/*M/////////////////////////////////////////////////////////////////////////////////////// +// +// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. +// +// By downloading, copying, installing or using the software you agree to this license. +// If you do not agree to this license, do not download, install, +// copy or use the software. +// +// +// License Agreement +// For Open Source Computer Vision Library +// +// Copyright (C) 2000-2008, Intel Corporation, all rights reserved. +// Copyright (C) 2009, Willow Garage Inc., all rights reserved. +// Third party copyrights are property of their respective owners. +// +// Redistribution and use in source and binary forms, with or without modification, +// are permitted provided that the following conditions are met: +// +// * Redistribution's of source code must retain the above copyright notice, +// this list of conditions and the following disclaimer. +// +// * Redistribution's in binary form must reproduce the above copyright notice, +// this list of conditions and the following disclaimer in the documentation +// and/or other materials provided with the distribution. +// +// * The name of the copyright holders may not be used to endorse or promote products +// derived from this software without specific prior written permission. +// +// This software is provided by the copyright holders and contributors "as is" and +// any express or implied warranties, including, but not limited to, the implied +// warranties of merchantability and fitness for a particular purpose are disclaimed. +// In no event shall the Intel Corporation or contributors be liable for any direct, +// indirect, incidental, special, exemplary, or consequential damages +// (including, but not limited to, procurement of substitute goods or services; +// loss of use, data, or profits; or business interruption) however caused +// and on any theory of liability, whether in contract, strict liability, +// or tort (including negligence or otherwise) arising in any way out of +// the use of this software, even if advised of the possibility of such damage. +// +//M*/ + +#ifndef _OPENCV_FLANN_HPP_ +#define _OPENCV_FLANN_HPP_ + +#ifdef __cplusplus + +#include "opencv2/core/types_c.h" +#include "opencv2/core/core.hpp" +#include "opencv2/flann/flann_base.hpp" +#include "opencv2/flann/miniflann.hpp" + +namespace cvflann +{ + CV_EXPORTS flann_distance_t flann_distance_type(); + FLANN_DEPRECATED CV_EXPORTS void set_distance_type(flann_distance_t distance_type, int order); +} + + +namespace cv +{ +namespace flann +{ + +template <typename T> struct CvType {}; +template <> struct CvType<unsigned char> { static int type() { return CV_8U; } }; +template <> struct CvType<char> { static int type() { return CV_8S; } }; +template <> struct CvType<unsigned short> { static int type() { return CV_16U; } }; +template <> struct CvType<short> { static int type() { return CV_16S; } }; +template <> struct CvType<int> { static int type() { return CV_32S; } }; +template <> struct CvType<float> { static int type() { return CV_32F; } }; +template <> struct CvType<double> { static int type() { return CV_64F; } }; + + +// bring the flann parameters into this namespace +using ::cvflann::get_param; +using ::cvflann::print_params; + +// bring the flann distances into this namespace +using ::cvflann::L2_Simple; +using ::cvflann::L2; +using ::cvflann::L1; +using ::cvflann::MinkowskiDistance; +using ::cvflann::MaxDistance; +using ::cvflann::HammingLUT; +using ::cvflann::Hamming; +using ::cvflann::Hamming2; +using ::cvflann::HistIntersectionDistance; +using ::cvflann::HellingerDistance; +using ::cvflann::ChiSquareDistance; +using ::cvflann::KL_Divergence; + + + +template <typename Distance> +class GenericIndex +{ +public: + typedef typename Distance::ElementType ElementType; + typedef typename Distance::ResultType DistanceType; + + GenericIndex(const Mat& features, const ::cvflann::IndexParams& params, Distance distance = Distance()); + + ~GenericIndex(); + + void knnSearch(const vector<ElementType>& query, vector<int>& indices, + vector<DistanceType>& dists, int knn, const ::cvflann::SearchParams& params); + void knnSearch(const Mat& queries, Mat& indices, Mat& dists, int knn, const ::cvflann::SearchParams& params); + + int radiusSearch(const vector<ElementType>& query, vector<int>& indices, + vector<DistanceType>& dists, DistanceType radius, const ::cvflann::SearchParams& params); + int radiusSearch(const Mat& query, Mat& indices, Mat& dists, + DistanceType radius, const ::cvflann::SearchParams& params); + + void save(std::string filename) { nnIndex->save(filename); } + + int veclen() const { return nnIndex->veclen(); } + + int size() const { return nnIndex->size(); } + + ::cvflann::IndexParams getParameters() { return nnIndex->getParameters(); } + + FLANN_DEPRECATED const ::cvflann::IndexParams* getIndexParameters() { return nnIndex->getIndexParameters(); } + +private: + ::cvflann::Index<Distance>* nnIndex; +}; + + +#define FLANN_DISTANCE_CHECK \ + if ( ::cvflann::flann_distance_type() != cvflann::FLANN_DIST_L2) { \ + printf("[WARNING] You are using cv::flann::Index (or cv::flann::GenericIndex) and have also changed "\ + "the distance using cvflann::set_distance_type. This is no longer working as expected "\ + "(cv::flann::Index always uses L2). You should create the index templated on the distance, "\ + "for example for L1 distance use: GenericIndex< L1<float> > \n"); \ + } + + +template <typename Distance> +GenericIndex<Distance>::GenericIndex(const Mat& dataset, const ::cvflann::IndexParams& params, Distance distance) +{ + CV_Assert(dataset.type() == CvType<ElementType>::type()); + CV_Assert(dataset.isContinuous()); + ::cvflann::Matrix<ElementType> m_dataset((ElementType*)dataset.ptr<ElementType>(0), dataset.rows, dataset.cols); + + nnIndex = new ::cvflann::Index<Distance>(m_dataset, params, distance); + + FLANN_DISTANCE_CHECK + + nnIndex->buildIndex(); +} + +template <typename Distance> +GenericIndex<Distance>::~GenericIndex() +{ + delete nnIndex; +} + +template <typename Distance> +void GenericIndex<Distance>::knnSearch(const vector<ElementType>& query, vector<int>& indices, vector<DistanceType>& dists, int knn, const ::cvflann::SearchParams& searchParams) +{ + ::cvflann::Matrix<ElementType> m_query((ElementType*)&query[0], 1, query.size()); + ::cvflann::Matrix<int> m_indices(&indices[0], 1, indices.size()); + ::cvflann::Matrix<DistanceType> m_dists(&dists[0], 1, dists.size()); + + FLANN_DISTANCE_CHECK + + nnIndex->knnSearch(m_query,m_indices,m_dists,knn,searchParams); +} + + +template <typename Distance> +void GenericIndex<Distance>::knnSearch(const Mat& queries, Mat& indices, Mat& dists, int knn, const ::cvflann::SearchParams& searchParams) +{ + CV_Assert(queries.type() == CvType<ElementType>::type()); + CV_Assert(queries.isContinuous()); + ::cvflann::Matrix<ElementType> m_queries((ElementType*)queries.ptr<ElementType>(0), queries.rows, queries.cols); + + CV_Assert(indices.type() == CV_32S); + CV_Assert(indices.isContinuous()); + ::cvflann::Matrix<int> m_indices((int*)indices.ptr<int>(0), indices.rows, indices.cols); + + CV_Assert(dists.type() == CvType<DistanceType>::type()); + CV_Assert(dists.isContinuous()); + ::cvflann::Matrix<DistanceType> m_dists((DistanceType*)dists.ptr<DistanceType>(0), dists.rows, dists.cols); + + FLANN_DISTANCE_CHECK + + nnIndex->knnSearch(m_queries,m_indices,m_dists,knn, searchParams); +} + +template <typename Distance> +int GenericIndex<Distance>::radiusSearch(const vector<ElementType>& query, vector<int>& indices, vector<DistanceType>& dists, DistanceType radius, const ::cvflann::SearchParams& searchParams) +{ + ::cvflann::Matrix<ElementType> m_query((ElementType*)&query[0], 1, query.size()); + ::cvflann::Matrix<int> m_indices(&indices[0], 1, indices.size()); + ::cvflann::Matrix<DistanceType> m_dists(&dists[0], 1, dists.size()); + + FLANN_DISTANCE_CHECK + + return nnIndex->radiusSearch(m_query,m_indices,m_dists,radius,searchParams); +} + +template <typename Distance> +int GenericIndex<Distance>::radiusSearch(const Mat& query, Mat& indices, Mat& dists, DistanceType radius, const ::cvflann::SearchParams& searchParams) +{ + CV_Assert(query.type() == CvType<ElementType>::type()); + CV_Assert(query.isContinuous()); + ::cvflann::Matrix<ElementType> m_query((ElementType*)query.ptr<ElementType>(0), query.rows, query.cols); + + CV_Assert(indices.type() == CV_32S); + CV_Assert(indices.isContinuous()); + ::cvflann::Matrix<int> m_indices((int*)indices.ptr<int>(0), indices.rows, indices.cols); + + CV_Assert(dists.type() == CvType<DistanceType>::type()); + CV_Assert(dists.isContinuous()); + ::cvflann::Matrix<DistanceType> m_dists((DistanceType*)dists.ptr<DistanceType>(0), dists.rows, dists.cols); + + FLANN_DISTANCE_CHECK + + return nnIndex->radiusSearch(m_query,m_indices,m_dists,radius,searchParams); +} + +/** + * @deprecated Use GenericIndex class instead + */ +template <typename T> +class +#ifndef _MSC_VER + FLANN_DEPRECATED +#endif + Index_ { +public: + typedef typename L2<T>::ElementType ElementType; + typedef typename L2<T>::ResultType DistanceType; + + Index_(const Mat& features, const ::cvflann::IndexParams& params); + + ~Index_(); + + void knnSearch(const vector<ElementType>& query, vector<int>& indices, vector<DistanceType>& dists, int knn, const ::cvflann::SearchParams& params); + void knnSearch(const Mat& queries, Mat& indices, Mat& dists, int knn, const ::cvflann::SearchParams& params); + + int radiusSearch(const vector<ElementType>& query, vector<int>& indices, vector<DistanceType>& dists, DistanceType radius, const ::cvflann::SearchParams& params); + int radiusSearch(const Mat& query, Mat& indices, Mat& dists, DistanceType radius, const ::cvflann::SearchParams& params); + + void save(std::string filename) + { + if (nnIndex_L1) nnIndex_L1->save(filename); + if (nnIndex_L2) nnIndex_L2->save(filename); + } + + int veclen() const + { + if (nnIndex_L1) return nnIndex_L1->veclen(); + if (nnIndex_L2) return nnIndex_L2->veclen(); + } + + int size() const + { + if (nnIndex_L1) return nnIndex_L1->size(); + if (nnIndex_L2) return nnIndex_L2->size(); + } + + ::cvflann::IndexParams getParameters() + { + if (nnIndex_L1) return nnIndex_L1->getParameters(); + if (nnIndex_L2) return nnIndex_L2->getParameters(); + + } + + FLANN_DEPRECATED const ::cvflann::IndexParams* getIndexParameters() + { + if (nnIndex_L1) return nnIndex_L1->getIndexParameters(); + if (nnIndex_L2) return nnIndex_L2->getIndexParameters(); + } + +private: + // providing backwards compatibility for L2 and L1 distances (most common) + ::cvflann::Index< L2<ElementType> >* nnIndex_L2; + ::cvflann::Index< L1<ElementType> >* nnIndex_L1; +}; + +#ifdef _MSC_VER +template <typename T> +class FLANN_DEPRECATED Index_; +#endif + +template <typename T> +Index_<T>::Index_(const Mat& dataset, const ::cvflann::IndexParams& params) +{ + printf("[WARNING] The cv::flann::Index_<T> class is deperecated, use cv::flann::GenericIndex<Distance> instead\n"); + + CV_Assert(dataset.type() == CvType<ElementType>::type()); + CV_Assert(dataset.isContinuous()); + ::cvflann::Matrix<ElementType> m_dataset((ElementType*)dataset.ptr<ElementType>(0), dataset.rows, dataset.cols); + + if ( ::cvflann::flann_distance_type() == cvflann::FLANN_DIST_L2 ) { + nnIndex_L1 = NULL; + nnIndex_L2 = new ::cvflann::Index< L2<ElementType> >(m_dataset, params); + } + else if ( ::cvflann::flann_distance_type() == cvflann::FLANN_DIST_L1 ) { + nnIndex_L1 = new ::cvflann::Index< L1<ElementType> >(m_dataset, params); + nnIndex_L2 = NULL; + } + else { + printf("[ERROR] cv::flann::Index_<T> only provides backwards compatibility for the L1 and L2 distances. " + "For other distance types you must use cv::flann::GenericIndex<Distance>\n"); + CV_Assert(0); + } + if (nnIndex_L1) nnIndex_L1->buildIndex(); + if (nnIndex_L2) nnIndex_L2->buildIndex(); +} + +template <typename T> +Index_<T>::~Index_() +{ + if (nnIndex_L1) delete nnIndex_L1; + if (nnIndex_L2) delete nnIndex_L2; +} + +template <typename T> +void Index_<T>::knnSearch(const vector<ElementType>& query, vector<int>& indices, vector<DistanceType>& dists, int knn, const ::cvflann::SearchParams& searchParams) +{ + ::cvflann::Matrix<ElementType> m_query((ElementType*)&query[0], 1, query.size()); + ::cvflann::Matrix<int> m_indices(&indices[0], 1, indices.size()); + ::cvflann::Matrix<DistanceType> m_dists(&dists[0], 1, dists.size()); + + if (nnIndex_L1) nnIndex_L1->knnSearch(m_query,m_indices,m_dists,knn,searchParams); + if (nnIndex_L2) nnIndex_L2->knnSearch(m_query,m_indices,m_dists,knn,searchParams); +} + + +template <typename T> +void Index_<T>::knnSearch(const Mat& queries, Mat& indices, Mat& dists, int knn, const ::cvflann::SearchParams& searchParams) +{ + CV_Assert(queries.type() == CvType<ElementType>::type()); + CV_Assert(queries.isContinuous()); + ::cvflann::Matrix<ElementType> m_queries((ElementType*)queries.ptr<ElementType>(0), queries.rows, queries.cols); + + CV_Assert(indices.type() == CV_32S); + CV_Assert(indices.isContinuous()); + ::cvflann::Matrix<int> m_indices((int*)indices.ptr<int>(0), indices.rows, indices.cols); + + CV_Assert(dists.type() == CvType<DistanceType>::type()); + CV_Assert(dists.isContinuous()); + ::cvflann::Matrix<DistanceType> m_dists((DistanceType*)dists.ptr<DistanceType>(0), dists.rows, dists.cols); + + if (nnIndex_L1) nnIndex_L1->knnSearch(m_queries,m_indices,m_dists,knn, searchParams); + if (nnIndex_L2) nnIndex_L2->knnSearch(m_queries,m_indices,m_dists,knn, searchParams); +} + +template <typename T> +int Index_<T>::radiusSearch(const vector<ElementType>& query, vector<int>& indices, vector<DistanceType>& dists, DistanceType radius, const ::cvflann::SearchParams& searchParams) +{ + ::cvflann::Matrix<ElementType> m_query((ElementType*)&query[0], 1, query.size()); + ::cvflann::Matrix<int> m_indices(&indices[0], 1, indices.size()); + ::cvflann::Matrix<DistanceType> m_dists(&dists[0], 1, dists.size()); + + if (nnIndex_L1) return nnIndex_L1->radiusSearch(m_query,m_indices,m_dists,radius,searchParams); + if (nnIndex_L2) return nnIndex_L2->radiusSearch(m_query,m_indices,m_dists,radius,searchParams); +} + +template <typename T> +int Index_<T>::radiusSearch(const Mat& query, Mat& indices, Mat& dists, DistanceType radius, const ::cvflann::SearchParams& searchParams) +{ + CV_Assert(query.type() == CvType<ElementType>::type()); + CV_Assert(query.isContinuous()); + ::cvflann::Matrix<ElementType> m_query((ElementType*)query.ptr<ElementType>(0), query.rows, query.cols); + + CV_Assert(indices.type() == CV_32S); + CV_Assert(indices.isContinuous()); + ::cvflann::Matrix<int> m_indices((int*)indices.ptr<int>(0), indices.rows, indices.cols); + + CV_Assert(dists.type() == CvType<DistanceType>::type()); + CV_Assert(dists.isContinuous()); + ::cvflann::Matrix<DistanceType> m_dists((DistanceType*)dists.ptr<DistanceType>(0), dists.rows, dists.cols); + + if (nnIndex_L1) return nnIndex_L1->radiusSearch(m_query,m_indices,m_dists,radius,searchParams); + if (nnIndex_L2) return nnIndex_L2->radiusSearch(m_query,m_indices,m_dists,radius,searchParams); +} + + +template <typename Distance> +int hierarchicalClustering(const Mat& features, Mat& centers, const ::cvflann::KMeansIndexParams& params, + Distance d = Distance()) +{ + typedef typename Distance::ElementType ElementType; + typedef typename Distance::ResultType DistanceType; + + CV_Assert(features.type() == CvType<ElementType>::type()); + CV_Assert(features.isContinuous()); + ::cvflann::Matrix<ElementType> m_features((ElementType*)features.ptr<ElementType>(0), features.rows, features.cols); + + CV_Assert(centers.type() == CvType<DistanceType>::type()); + CV_Assert(centers.isContinuous()); + ::cvflann::Matrix<DistanceType> m_centers((DistanceType*)centers.ptr<DistanceType>(0), centers.rows, centers.cols); + + return ::cvflann::hierarchicalClustering<Distance>(m_features, m_centers, params, d); +} + + +template <typename ELEM_TYPE, typename DIST_TYPE> +FLANN_DEPRECATED int hierarchicalClustering(const Mat& features, Mat& centers, const ::cvflann::KMeansIndexParams& params) +{ + printf("[WARNING] cv::flann::hierarchicalClustering<ELEM_TYPE,DIST_TYPE> is deprecated, use " + "cv::flann::hierarchicalClustering<Distance> instead\n"); + + if ( ::cvflann::flann_distance_type() == cvflann::FLANN_DIST_L2 ) { + return hierarchicalClustering< L2<ELEM_TYPE> >(features, centers, params); + } + else if ( ::cvflann::flann_distance_type() == cvflann::FLANN_DIST_L1 ) { + return hierarchicalClustering< L1<ELEM_TYPE> >(features, centers, params); + } + else { + printf("[ERROR] cv::flann::hierarchicalClustering<ELEM_TYPE,DIST_TYPE> only provides backwards " + "compatibility for the L1 and L2 distances. " + "For other distance types you must use cv::flann::hierarchicalClustering<Distance>\n"); + CV_Assert(0); + } +} + +} } // namespace cv::flann + +#endif // __cplusplus + +#endif |