summaryrefslogtreecommitdiff
path: root/2.3-1/thirdparty/includes/OpenCV/opencv2/contrib/contrib.hpp
diff options
context:
space:
mode:
Diffstat (limited to '2.3-1/thirdparty/includes/OpenCV/opencv2/contrib/contrib.hpp')
-rw-r--r--2.3-1/thirdparty/includes/OpenCV/opencv2/contrib/contrib.hpp998
1 files changed, 998 insertions, 0 deletions
diff --git a/2.3-1/thirdparty/includes/OpenCV/opencv2/contrib/contrib.hpp b/2.3-1/thirdparty/includes/OpenCV/opencv2/contrib/contrib.hpp
new file mode 100644
index 00000000..d5879424
--- /dev/null
+++ b/2.3-1/thirdparty/includes/OpenCV/opencv2/contrib/contrib.hpp
@@ -0,0 +1,998 @@
+/*M///////////////////////////////////////////////////////////////////////////////////////
+//
+// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
+//
+// By downloading, copying, installing or using the software you agree to this license.
+// If you do not agree to this license, do not download, install,
+// copy or use the software.
+//
+//
+// License Agreement
+// For Open Source Computer Vision Library
+//
+// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
+// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
+// Third party copyrights are property of their respective owners.
+//
+// Redistribution and use in source and binary forms, with or without modification,
+// are permitted provided that the following conditions are met:
+//
+// * Redistribution's of source code must retain the above copyright notice,
+// this list of conditions and the following disclaimer.
+//
+// * Redistribution's in binary form must reproduce the above copyright notice,
+// this list of conditions and the following disclaimer in the documentation
+// and/or other materials provided with the distribution.
+//
+// * The name of the copyright holders may not be used to endorse or promote products
+// derived from this software without specific prior written permission.
+//
+// This software is provided by the copyright holders and contributors "as is" and
+// any express or implied warranties, including, but not limited to, the implied
+// warranties of merchantability and fitness for a particular purpose are disclaimed.
+// In no event shall the Intel Corporation or contributors be liable for any direct,
+// indirect, incidental, special, exemplary, or consequential damages
+// (including, but not limited to, procurement of substitute goods or services;
+// loss of use, data, or profits; or business interruption) however caused
+// and on any theory of liability, whether in contract, strict liability,
+// or tort (including negligence or otherwise) arising in any way out of
+// the use of this software, even if advised of the possibility of such damage.
+//
+//M*/
+
+#ifndef __OPENCV_CONTRIB_HPP__
+#define __OPENCV_CONTRIB_HPP__
+
+#include "opencv2/core/core.hpp"
+#include "opencv2/imgproc/imgproc.hpp"
+#include "opencv2/features2d/features2d.hpp"
+#include "opencv2/objdetect/objdetect.hpp"
+
+#ifdef __cplusplus
+
+/****************************************************************************************\
+* Adaptive Skin Detector *
+\****************************************************************************************/
+
+class CV_EXPORTS CvAdaptiveSkinDetector
+{
+private:
+ enum {
+ GSD_HUE_LT = 3,
+ GSD_HUE_UT = 33,
+ GSD_INTENSITY_LT = 15,
+ GSD_INTENSITY_UT = 250
+ };
+
+ class CV_EXPORTS Histogram
+ {
+ private:
+ enum {
+ HistogramSize = (GSD_HUE_UT - GSD_HUE_LT + 1)
+ };
+
+ protected:
+ int findCoverageIndex(double surfaceToCover, int defaultValue = 0);
+
+ public:
+ CvHistogram *fHistogram;
+ Histogram();
+ virtual ~Histogram();
+
+ void findCurveThresholds(int &x1, int &x2, double percent = 0.05);
+ void mergeWith(Histogram *source, double weight);
+ };
+
+ int nStartCounter, nFrameCount, nSkinHueLowerBound, nSkinHueUpperBound, nMorphingMethod, nSamplingDivider;
+ double fHistogramMergeFactor, fHuePercentCovered;
+ Histogram histogramHueMotion, skinHueHistogram;
+ IplImage *imgHueFrame, *imgSaturationFrame, *imgLastGrayFrame, *imgMotionFrame, *imgFilteredFrame;
+ IplImage *imgShrinked, *imgTemp, *imgGrayFrame, *imgHSVFrame;
+
+protected:
+ void initData(IplImage *src, int widthDivider, int heightDivider);
+ void adaptiveFilter();
+
+public:
+
+ enum {
+ MORPHING_METHOD_NONE = 0,
+ MORPHING_METHOD_ERODE = 1,
+ MORPHING_METHOD_ERODE_ERODE = 2,
+ MORPHING_METHOD_ERODE_DILATE = 3
+ };
+
+ CvAdaptiveSkinDetector(int samplingDivider = 1, int morphingMethod = MORPHING_METHOD_NONE);
+ virtual ~CvAdaptiveSkinDetector();
+
+ virtual void process(IplImage *inputBGRImage, IplImage *outputHueMask);
+};
+
+
+/****************************************************************************************\
+ * Fuzzy MeanShift Tracker *
+ \****************************************************************************************/
+
+class CV_EXPORTS CvFuzzyPoint {
+public:
+ double x, y, value;
+
+ CvFuzzyPoint(double _x, double _y);
+};
+
+class CV_EXPORTS CvFuzzyCurve {
+private:
+ std::vector<CvFuzzyPoint> points;
+ double value, centre;
+
+ bool between(double x, double x1, double x2);
+
+public:
+ CvFuzzyCurve();
+ ~CvFuzzyCurve();
+
+ void setCentre(double _centre);
+ double getCentre();
+ void clear();
+ void addPoint(double x, double y);
+ double calcValue(double param);
+ double getValue();
+ void setValue(double _value);
+};
+
+class CV_EXPORTS CvFuzzyFunction {
+public:
+ std::vector<CvFuzzyCurve> curves;
+
+ CvFuzzyFunction();
+ ~CvFuzzyFunction();
+ void addCurve(CvFuzzyCurve *curve, double value = 0);
+ void resetValues();
+ double calcValue();
+ CvFuzzyCurve *newCurve();
+};
+
+class CV_EXPORTS CvFuzzyRule {
+private:
+ CvFuzzyCurve *fuzzyInput1, *fuzzyInput2;
+ CvFuzzyCurve *fuzzyOutput;
+public:
+ CvFuzzyRule();
+ ~CvFuzzyRule();
+ void setRule(CvFuzzyCurve *c1, CvFuzzyCurve *c2, CvFuzzyCurve *o1);
+ double calcValue(double param1, double param2);
+ CvFuzzyCurve *getOutputCurve();
+};
+
+class CV_EXPORTS CvFuzzyController {
+private:
+ std::vector<CvFuzzyRule*> rules;
+public:
+ CvFuzzyController();
+ ~CvFuzzyController();
+ void addRule(CvFuzzyCurve *c1, CvFuzzyCurve *c2, CvFuzzyCurve *o1);
+ double calcOutput(double param1, double param2);
+};
+
+class CV_EXPORTS CvFuzzyMeanShiftTracker
+{
+private:
+ class FuzzyResizer
+ {
+ private:
+ CvFuzzyFunction iInput, iOutput;
+ CvFuzzyController fuzzyController;
+ public:
+ FuzzyResizer();
+ int calcOutput(double edgeDensity, double density);
+ };
+
+ class SearchWindow
+ {
+ public:
+ FuzzyResizer *fuzzyResizer;
+ int x, y;
+ int width, height, maxWidth, maxHeight, ellipseHeight, ellipseWidth;
+ int ldx, ldy, ldw, ldh, numShifts, numIters;
+ int xGc, yGc;
+ long m00, m01, m10, m11, m02, m20;
+ double ellipseAngle;
+ double density;
+ unsigned int depthLow, depthHigh;
+ int verticalEdgeLeft, verticalEdgeRight, horizontalEdgeTop, horizontalEdgeBottom;
+
+ SearchWindow();
+ ~SearchWindow();
+ void setSize(int _x, int _y, int _width, int _height);
+ void initDepthValues(IplImage *maskImage, IplImage *depthMap);
+ bool shift();
+ void extractInfo(IplImage *maskImage, IplImage *depthMap, bool initDepth);
+ void getResizeAttribsEdgeDensityLinear(int &resizeDx, int &resizeDy, int &resizeDw, int &resizeDh);
+ void getResizeAttribsInnerDensity(int &resizeDx, int &resizeDy, int &resizeDw, int &resizeDh);
+ void getResizeAttribsEdgeDensityFuzzy(int &resizeDx, int &resizeDy, int &resizeDw, int &resizeDh);
+ bool meanShift(IplImage *maskImage, IplImage *depthMap, int maxIteration, bool initDepth);
+ };
+
+public:
+ enum TrackingState
+ {
+ tsNone = 0,
+ tsSearching = 1,
+ tsTracking = 2,
+ tsSetWindow = 3,
+ tsDisabled = 10
+ };
+
+ enum ResizeMethod {
+ rmEdgeDensityLinear = 0,
+ rmEdgeDensityFuzzy = 1,
+ rmInnerDensity = 2
+ };
+
+ enum {
+ MinKernelMass = 1000
+ };
+
+ SearchWindow kernel;
+ int searchMode;
+
+private:
+ enum
+ {
+ MaxMeanShiftIteration = 5,
+ MaxSetSizeIteration = 5
+ };
+
+ void findOptimumSearchWindow(SearchWindow &searchWindow, IplImage *maskImage, IplImage *depthMap, int maxIteration, int resizeMethod, bool initDepth);
+
+public:
+ CvFuzzyMeanShiftTracker();
+ ~CvFuzzyMeanShiftTracker();
+
+ void track(IplImage *maskImage, IplImage *depthMap, int resizeMethod, bool resetSearch, int minKernelMass = MinKernelMass);
+};
+
+
+namespace cv
+{
+
+ class CV_EXPORTS Octree
+ {
+ public:
+ struct Node
+ {
+ Node() {}
+ int begin, end;
+ float x_min, x_max, y_min, y_max, z_min, z_max;
+ int maxLevels;
+ bool isLeaf;
+ int children[8];
+ };
+
+ Octree();
+ Octree( const vector<Point3f>& points, int maxLevels = 10, int minPoints = 20 );
+ virtual ~Octree();
+
+ virtual void buildTree( const vector<Point3f>& points, int maxLevels = 10, int minPoints = 20 );
+ virtual void getPointsWithinSphere( const Point3f& center, float radius,
+ vector<Point3f>& points ) const;
+ const vector<Node>& getNodes() const { return nodes; }
+ private:
+ int minPoints;
+ vector<Point3f> points;
+ vector<Node> nodes;
+
+ virtual void buildNext(size_t node_ind);
+ };
+
+
+ class CV_EXPORTS Mesh3D
+ {
+ public:
+ struct EmptyMeshException {};
+
+ Mesh3D();
+ Mesh3D(const vector<Point3f>& vtx);
+ ~Mesh3D();
+
+ void buildOctree();
+ void clearOctree();
+ float estimateResolution(float tryRatio = 0.1f);
+ void computeNormals(float normalRadius, int minNeighbors = 20);
+ void computeNormals(const vector<int>& subset, float normalRadius, int minNeighbors = 20);
+
+ void writeAsVrml(const String& file, const vector<Scalar>& colors = vector<Scalar>()) const;
+
+ vector<Point3f> vtx;
+ vector<Point3f> normals;
+ float resolution;
+ Octree octree;
+
+ const static Point3f allzero;
+ };
+
+ class CV_EXPORTS SpinImageModel
+ {
+ public:
+
+ /* model parameters, leave unset for default or auto estimate */
+ float normalRadius;
+ int minNeighbors;
+
+ float binSize;
+ int imageWidth;
+
+ float lambda;
+ float gamma;
+
+ float T_GeometriccConsistency;
+ float T_GroupingCorespondances;
+
+ /* public interface */
+ SpinImageModel();
+ explicit SpinImageModel(const Mesh3D& mesh);
+ ~SpinImageModel();
+
+ void setLogger(std::ostream* log);
+ void selectRandomSubset(float ratio);
+ void setSubset(const vector<int>& subset);
+ void compute();
+
+ void match(const SpinImageModel& scene, vector< vector<Vec2i> >& result);
+
+ Mat packRandomScaledSpins(bool separateScale = false, size_t xCount = 10, size_t yCount = 10) const;
+
+ size_t getSpinCount() const { return spinImages.rows; }
+ Mat getSpinImage(size_t index) const { return spinImages.row((int)index); }
+ const Point3f& getSpinVertex(size_t index) const { return mesh.vtx[subset[index]]; }
+ const Point3f& getSpinNormal(size_t index) const { return mesh.normals[subset[index]]; }
+
+ const Mesh3D& getMesh() const { return mesh; }
+ Mesh3D& getMesh() { return mesh; }
+
+ /* static utility functions */
+ static bool spinCorrelation(const Mat& spin1, const Mat& spin2, float lambda, float& result);
+
+ static Point2f calcSpinMapCoo(const Point3f& point, const Point3f& vertex, const Point3f& normal);
+
+ static float geometricConsistency(const Point3f& pointScene1, const Point3f& normalScene1,
+ const Point3f& pointModel1, const Point3f& normalModel1,
+ const Point3f& pointScene2, const Point3f& normalScene2,
+ const Point3f& pointModel2, const Point3f& normalModel2);
+
+ static float groupingCreteria(const Point3f& pointScene1, const Point3f& normalScene1,
+ const Point3f& pointModel1, const Point3f& normalModel1,
+ const Point3f& pointScene2, const Point3f& normalScene2,
+ const Point3f& pointModel2, const Point3f& normalModel2,
+ float gamma);
+ protected:
+ void defaultParams();
+
+ void matchSpinToModel(const Mat& spin, vector<int>& indeces,
+ vector<float>& corrCoeffs, bool useExtremeOutliers = true) const;
+
+ void repackSpinImages(const vector<uchar>& mask, Mat& spinImages, bool reAlloc = true) const;
+
+ vector<int> subset;
+ Mesh3D mesh;
+ Mat spinImages;
+ std::ostream* out;
+ };
+
+ class CV_EXPORTS TickMeter
+ {
+ public:
+ TickMeter();
+ void start();
+ void stop();
+
+ int64 getTimeTicks() const;
+ double getTimeMicro() const;
+ double getTimeMilli() const;
+ double getTimeSec() const;
+ int64 getCounter() const;
+
+ void reset();
+ private:
+ int64 counter;
+ int64 sumTime;
+ int64 startTime;
+ };
+
+ CV_EXPORTS std::ostream& operator<<(std::ostream& out, const TickMeter& tm);
+
+ class CV_EXPORTS SelfSimDescriptor
+ {
+ public:
+ SelfSimDescriptor();
+ SelfSimDescriptor(int _ssize, int _lsize,
+ int _startDistanceBucket=DEFAULT_START_DISTANCE_BUCKET,
+ int _numberOfDistanceBuckets=DEFAULT_NUM_DISTANCE_BUCKETS,
+ int _nangles=DEFAULT_NUM_ANGLES);
+ SelfSimDescriptor(const SelfSimDescriptor& ss);
+ virtual ~SelfSimDescriptor();
+ SelfSimDescriptor& operator = (const SelfSimDescriptor& ss);
+
+ size_t getDescriptorSize() const;
+ Size getGridSize( Size imgsize, Size winStride ) const;
+
+ virtual void compute(const Mat& img, vector<float>& descriptors, Size winStride=Size(),
+ const vector<Point>& locations=vector<Point>()) const;
+ virtual void computeLogPolarMapping(Mat& mappingMask) const;
+ virtual void SSD(const Mat& img, Point pt, Mat& ssd) const;
+
+ int smallSize;
+ int largeSize;
+ int startDistanceBucket;
+ int numberOfDistanceBuckets;
+ int numberOfAngles;
+
+ enum { DEFAULT_SMALL_SIZE = 5, DEFAULT_LARGE_SIZE = 41,
+ DEFAULT_NUM_ANGLES = 20, DEFAULT_START_DISTANCE_BUCKET = 3,
+ DEFAULT_NUM_DISTANCE_BUCKETS = 7 };
+ };
+
+
+ typedef bool (*BundleAdjustCallback)(int iteration, double norm_error, void* user_data);
+
+ class CV_EXPORTS LevMarqSparse {
+ public:
+ LevMarqSparse();
+ LevMarqSparse(int npoints, // number of points
+ int ncameras, // number of cameras
+ int nPointParams, // number of params per one point (3 in case of 3D points)
+ int nCameraParams, // number of parameters per one camera
+ int nErrParams, // number of parameters in measurement vector
+ // for 1 point at one camera (2 in case of 2D projections)
+ Mat& visibility, // visibility matrix. rows correspond to points, columns correspond to cameras
+ // 1 - point is visible for the camera, 0 - invisible
+ Mat& P0, // starting vector of parameters, first cameras then points
+ Mat& X, // measurements, in order of visibility. non visible cases are skipped
+ TermCriteria criteria, // termination criteria
+
+ // callback for estimation of Jacobian matrices
+ void (CV_CDECL * fjac)(int i, int j, Mat& point_params,
+ Mat& cam_params, Mat& A, Mat& B, void* data),
+ // callback for estimation of backprojection errors
+ void (CV_CDECL * func)(int i, int j, Mat& point_params,
+ Mat& cam_params, Mat& estim, void* data),
+ void* data, // user-specific data passed to the callbacks
+ BundleAdjustCallback cb, void* user_data
+ );
+
+ virtual ~LevMarqSparse();
+
+ virtual void run( int npoints, // number of points
+ int ncameras, // number of cameras
+ int nPointParams, // number of params per one point (3 in case of 3D points)
+ int nCameraParams, // number of parameters per one camera
+ int nErrParams, // number of parameters in measurement vector
+ // for 1 point at one camera (2 in case of 2D projections)
+ Mat& visibility, // visibility matrix. rows correspond to points, columns correspond to cameras
+ // 1 - point is visible for the camera, 0 - invisible
+ Mat& P0, // starting vector of parameters, first cameras then points
+ Mat& X, // measurements, in order of visibility. non visible cases are skipped
+ TermCriteria criteria, // termination criteria
+
+ // callback for estimation of Jacobian matrices
+ void (CV_CDECL * fjac)(int i, int j, Mat& point_params,
+ Mat& cam_params, Mat& A, Mat& B, void* data),
+ // callback for estimation of backprojection errors
+ void (CV_CDECL * func)(int i, int j, Mat& point_params,
+ Mat& cam_params, Mat& estim, void* data),
+ void* data // user-specific data passed to the callbacks
+ );
+
+ virtual void clear();
+
+ // useful function to do simple bundle adjustment tasks
+ static void bundleAdjust(vector<Point3d>& points, // positions of points in global coordinate system (input and output)
+ const vector<vector<Point2d> >& imagePoints, // projections of 3d points for every camera
+ const vector<vector<int> >& visibility, // visibility of 3d points for every camera
+ vector<Mat>& cameraMatrix, // intrinsic matrices of all cameras (input and output)
+ vector<Mat>& R, // rotation matrices of all cameras (input and output)
+ vector<Mat>& T, // translation vector of all cameras (input and output)
+ vector<Mat>& distCoeffs, // distortion coefficients of all cameras (input and output)
+ const TermCriteria& criteria=
+ TermCriteria(TermCriteria::COUNT+TermCriteria::EPS, 30, DBL_EPSILON),
+ BundleAdjustCallback cb = 0, void* user_data = 0);
+
+ public:
+ virtual void optimize(CvMat &_vis); //main function that runs minimization
+
+ //iteratively asks for measurement for visible camera-point pairs
+ void ask_for_proj(CvMat &_vis,bool once=false);
+ //iteratively asks for Jacobians for every camera_point pair
+ void ask_for_projac(CvMat &_vis);
+
+ CvMat* err; //error X-hX
+ double prevErrNorm, errNorm;
+ double lambda;
+ CvTermCriteria criteria;
+ int iters;
+
+ CvMat** U; //size of array is equal to number of cameras
+ CvMat** V; //size of array is equal to number of points
+ CvMat** inv_V_star; //inverse of V*
+
+ CvMat** A;
+ CvMat** B;
+ CvMat** W;
+
+ CvMat* X; //measurement
+ CvMat* hX; //current measurement extimation given new parameter vector
+
+ CvMat* prevP; //current already accepted parameter.
+ CvMat* P; // parameters used to evaluate function with new params
+ // this parameters may be rejected
+
+ CvMat* deltaP; //computed increase of parameters (result of normal system solution )
+
+ CvMat** ea; // sum_i AijT * e_ij , used as right part of normal equation
+ // length of array is j = number of cameras
+ CvMat** eb; // sum_j BijT * e_ij , used as right part of normal equation
+ // length of array is i = number of points
+
+ CvMat** Yj; //length of array is i = num_points
+
+ CvMat* S; //big matrix of block Sjk , each block has size num_cam_params x num_cam_params
+
+ CvMat* JtJ_diag; //diagonal of JtJ, used to backup diagonal elements before augmentation
+
+ CvMat* Vis_index; // matrix which element is index of measurement for point i and camera j
+
+ int num_cams;
+ int num_points;
+ int num_err_param;
+ int num_cam_param;
+ int num_point_param;
+
+ //target function and jacobian pointers, which needs to be initialized
+ void (*fjac)(int i, int j, Mat& point_params, Mat& cam_params, Mat& A, Mat& B, void* data);
+ void (*func)(int i, int j, Mat& point_params, Mat& cam_params, Mat& estim, void* data);
+
+ void* data;
+
+ BundleAdjustCallback cb;
+ void* user_data;
+ };
+
+ CV_EXPORTS_W int chamerMatching( Mat& img, Mat& templ,
+ CV_OUT vector<vector<Point> >& results, CV_OUT vector<float>& cost,
+ double templScale=1, int maxMatches = 20,
+ double minMatchDistance = 1.0, int padX = 3,
+ int padY = 3, int scales = 5, double minScale = 0.6, double maxScale = 1.6,
+ double orientationWeight = 0.5, double truncate = 20);
+
+
+ class CV_EXPORTS_W StereoVar
+ {
+ public:
+ // Flags
+ enum {USE_INITIAL_DISPARITY = 1, USE_EQUALIZE_HIST = 2, USE_SMART_ID = 4, USE_AUTO_PARAMS = 8, USE_MEDIAN_FILTERING = 16};
+ enum {CYCLE_O, CYCLE_V};
+ enum {PENALIZATION_TICHONOV, PENALIZATION_CHARBONNIER, PENALIZATION_PERONA_MALIK};
+
+ //! the default constructor
+ CV_WRAP StereoVar();
+
+ //! the full constructor taking all the necessary algorithm parameters
+ CV_WRAP StereoVar(int levels, double pyrScale, int nIt, int minDisp, int maxDisp, int poly_n, double poly_sigma, float fi, float lambda, int penalization, int cycle, int flags);
+
+ //! the destructor
+ virtual ~StereoVar();
+
+ //! the stereo correspondence operator that computes disparity map for the specified rectified stereo pair
+ CV_WRAP_AS(compute) virtual void operator()(const Mat& left, const Mat& right, CV_OUT Mat& disp);
+
+ CV_PROP_RW int levels;
+ CV_PROP_RW double pyrScale;
+ CV_PROP_RW int nIt;
+ CV_PROP_RW int minDisp;
+ CV_PROP_RW int maxDisp;
+ CV_PROP_RW int poly_n;
+ CV_PROP_RW double poly_sigma;
+ CV_PROP_RW float fi;
+ CV_PROP_RW float lambda;
+ CV_PROP_RW int penalization;
+ CV_PROP_RW int cycle;
+ CV_PROP_RW int flags;
+
+ private:
+ void autoParams();
+ void FMG(Mat &I1, Mat &I2, Mat &I2x, Mat &u, int level);
+ void VCycle_MyFAS(Mat &I1_h, Mat &I2_h, Mat &I2x_h, Mat &u_h, int level);
+ void VariationalSolver(Mat &I1_h, Mat &I2_h, Mat &I2x_h, Mat &u_h, int level);
+ };
+
+ CV_EXPORTS void polyfit(const Mat& srcx, const Mat& srcy, Mat& dst, int order);
+
+ class CV_EXPORTS Directory
+ {
+ public:
+ static std::vector<std::string> GetListFiles ( const std::string& path, const std::string & exten = "*", bool addPath = true );
+ static std::vector<std::string> GetListFilesR ( const std::string& path, const std::string & exten = "*", bool addPath = true );
+ static std::vector<std::string> GetListFolders( const std::string& path, const std::string & exten = "*", bool addPath = true );
+ };
+
+ /*
+ * Generation of a set of different colors by the following way:
+ * 1) generate more then need colors (in "factor" times) in RGB,
+ * 2) convert them to Lab,
+ * 3) choose the needed count of colors from the set that are more different from
+ * each other,
+ * 4) convert the colors back to RGB
+ */
+ CV_EXPORTS void generateColors( std::vector<Scalar>& colors, size_t count, size_t factor=100 );
+
+
+ /*
+ * Estimate the rigid body motion from frame0 to frame1. The method is based on the paper
+ * "Real-Time Visual Odometry from Dense RGB-D Images", F. Steinbucker, J. Strum, D. Cremers, ICCV, 2011.
+ */
+ enum { ROTATION = 1,
+ TRANSLATION = 2,
+ RIGID_BODY_MOTION = 4
+ };
+ CV_EXPORTS bool RGBDOdometry( Mat& Rt, const Mat& initRt,
+ const Mat& image0, const Mat& depth0, const Mat& mask0,
+ const Mat& image1, const Mat& depth1, const Mat& mask1,
+ const Mat& cameraMatrix, float minDepth=0.f, float maxDepth=4.f, float maxDepthDiff=0.07f,
+ const std::vector<int>& iterCounts=std::vector<int>(),
+ const std::vector<float>& minGradientMagnitudes=std::vector<float>(),
+ int transformType=RIGID_BODY_MOTION );
+
+ /**
+ *Bilinear interpolation technique.
+ *
+ *The value of a desired cortical pixel is obtained through a bilinear interpolation of the values
+ *of the four nearest neighbouring Cartesian pixels to the center of the RF.
+ *The same principle is applied to the inverse transformation.
+ *
+ *More details can be found in http://dx.doi.org/10.1007/978-3-642-23968-7_5
+ */
+ class CV_EXPORTS LogPolar_Interp
+ {
+ public:
+
+ LogPolar_Interp() {}
+
+ /**
+ *Constructor
+ *\param w the width of the input image
+ *\param h the height of the input image
+ *\param center the transformation center: where the output precision is maximal
+ *\param R the number of rings of the cortical image (default value 70 pixel)
+ *\param ro0 the radius of the blind spot (default value 3 pixel)
+ *\param interp interpolation algorithm
+ *\param full \a 1 (default value) means that the retinal image (the inverse transform) is computed within the circumscribing circle.
+ * \a 0 means that the retinal image is computed within the inscribed circle.
+ *\param S the number of sectors of the cortical image (default value 70 pixel).
+ * Its value is usually internally computed to obtain a pixel aspect ratio equals to 1.
+ *\param sp \a 1 (default value) means that the parameter \a S is internally computed.
+ * \a 0 means that the parameter \a S is provided by the user.
+ */
+ LogPolar_Interp(int w, int h, Point2i center, int R=70, double ro0=3.0,
+ int interp=INTER_LINEAR, int full=1, int S=117, int sp=1);
+ /**
+ *Transformation from Cartesian image to cortical (log-polar) image.
+ *\param source the Cartesian image
+ *\return the transformed image (cortical image)
+ */
+ const Mat to_cortical(const Mat &source);
+ /**
+ *Transformation from cortical image to retinal (inverse log-polar) image.
+ *\param source the cortical image
+ *\return the transformed image (retinal image)
+ */
+ const Mat to_cartesian(const Mat &source);
+ /**
+ *Destructor
+ */
+ ~LogPolar_Interp();
+
+ protected:
+
+ Mat Rsri;
+ Mat Csri;
+
+ int S, R, M, N;
+ int top, bottom,left,right;
+ double ro0, romax, a, q;
+ int interp;
+
+ Mat ETAyx;
+ Mat CSIyx;
+
+ void create_map(int M, int N, int R, int S, double ro0);
+ };
+
+ /**
+ *Overlapping circular receptive fields technique
+ *
+ *The Cartesian plane is divided in two regions: the fovea and the periphery.
+ *The fovea (oversampling) is handled by using the bilinear interpolation technique described above, whereas in
+ *the periphery we use the overlapping Gaussian circular RFs.
+ *
+ *More details can be found in http://dx.doi.org/10.1007/978-3-642-23968-7_5
+ */
+ class CV_EXPORTS LogPolar_Overlapping
+ {
+ public:
+ LogPolar_Overlapping() {}
+
+ /**
+ *Constructor
+ *\param w the width of the input image
+ *\param h the height of the input image
+ *\param center the transformation center: where the output precision is maximal
+ *\param R the number of rings of the cortical image (default value 70 pixel)
+ *\param ro0 the radius of the blind spot (default value 3 pixel)
+ *\param full \a 1 (default value) means that the retinal image (the inverse transform) is computed within the circumscribing circle.
+ * \a 0 means that the retinal image is computed within the inscribed circle.
+ *\param S the number of sectors of the cortical image (default value 70 pixel).
+ * Its value is usually internally computed to obtain a pixel aspect ratio equals to 1.
+ *\param sp \a 1 (default value) means that the parameter \a S is internally computed.
+ * \a 0 means that the parameter \a S is provided by the user.
+ */
+ LogPolar_Overlapping(int w, int h, Point2i center, int R=70,
+ double ro0=3.0, int full=1, int S=117, int sp=1);
+ /**
+ *Transformation from Cartesian image to cortical (log-polar) image.
+ *\param source the Cartesian image
+ *\return the transformed image (cortical image)
+ */
+ const Mat to_cortical(const Mat &source);
+ /**
+ *Transformation from cortical image to retinal (inverse log-polar) image.
+ *\param source the cortical image
+ *\return the transformed image (retinal image)
+ */
+ const Mat to_cartesian(const Mat &source);
+ /**
+ *Destructor
+ */
+ ~LogPolar_Overlapping();
+
+ protected:
+
+ Mat Rsri;
+ Mat Csri;
+ vector<int> Rsr;
+ vector<int> Csr;
+ vector<double> Wsr;
+
+ int S, R, M, N, ind1;
+ int top, bottom,left,right;
+ double ro0, romax, a, q;
+
+ struct kernel
+ {
+ kernel() { w = 0; }
+ vector<double> weights;
+ int w;
+ };
+
+ Mat ETAyx;
+ Mat CSIyx;
+ vector<kernel> w_ker_2D;
+
+ void create_map(int M, int N, int R, int S, double ro0);
+ };
+
+ /**
+ * Adjacent receptive fields technique
+ *
+ *All the Cartesian pixels, whose coordinates in the cortical domain share the same integer part, are assigned to the same RF.
+ *The precision of the boundaries of the RF can be improved by breaking each pixel into subpixels and assigning each of them to the correct RF.
+ *This technique is implemented from: Traver, V., Pla, F.: Log-polar mapping template design: From task-level requirements
+ *to geometry parameters. Image Vision Comput. 26(10) (2008) 1354-1370
+ *
+ *More details can be found in http://dx.doi.org/10.1007/978-3-642-23968-7_5
+ */
+ class CV_EXPORTS LogPolar_Adjacent
+ {
+ public:
+ LogPolar_Adjacent() {}
+
+ /**
+ *Constructor
+ *\param w the width of the input image
+ *\param h the height of the input image
+ *\param center the transformation center: where the output precision is maximal
+ *\param R the number of rings of the cortical image (default value 70 pixel)
+ *\param ro0 the radius of the blind spot (default value 3 pixel)
+ *\param smin the size of the subpixel (default value 0.25 pixel)
+ *\param full \a 1 (default value) means that the retinal image (the inverse transform) is computed within the circumscribing circle.
+ * \a 0 means that the retinal image is computed within the inscribed circle.
+ *\param S the number of sectors of the cortical image (default value 70 pixel).
+ * Its value is usually internally computed to obtain a pixel aspect ratio equals to 1.
+ *\param sp \a 1 (default value) means that the parameter \a S is internally computed.
+ * \a 0 means that the parameter \a S is provided by the user.
+ */
+ LogPolar_Adjacent(int w, int h, Point2i center, int R=70, double ro0=3.0, double smin=0.25, int full=1, int S=117, int sp=1);
+ /**
+ *Transformation from Cartesian image to cortical (log-polar) image.
+ *\param source the Cartesian image
+ *\return the transformed image (cortical image)
+ */
+ const Mat to_cortical(const Mat &source);
+ /**
+ *Transformation from cortical image to retinal (inverse log-polar) image.
+ *\param source the cortical image
+ *\return the transformed image (retinal image)
+ */
+ const Mat to_cartesian(const Mat &source);
+ /**
+ *Destructor
+ */
+ ~LogPolar_Adjacent();
+
+ protected:
+ struct pixel
+ {
+ pixel() { u = v = 0; a = 0.; }
+ int u;
+ int v;
+ double a;
+ };
+ int S, R, M, N;
+ int top, bottom,left,right;
+ double ro0, romax, a, q;
+ vector<vector<pixel> > L;
+ vector<double> A;
+
+ void subdivide_recursively(double x, double y, int i, int j, double length, double smin);
+ bool get_uv(double x, double y, int&u, int&v);
+ void create_map(int M, int N, int R, int S, double ro0, double smin);
+ };
+
+ CV_EXPORTS Mat subspaceProject(InputArray W, InputArray mean, InputArray src);
+ CV_EXPORTS Mat subspaceReconstruct(InputArray W, InputArray mean, InputArray src);
+
+ class CV_EXPORTS LDA
+ {
+ public:
+ // Initializes a LDA with num_components (default 0).
+ LDA(int num_components = 0) :
+ _num_components(num_components) {};
+
+ // Initializes and performs a Discriminant Analysis with Fisher's
+ // Optimization Criterion on given data in src and corresponding labels
+ // in labels. If 0 (or less) number of components are given, they are
+ // automatically determined for given data in computation.
+ LDA(const Mat& src, vector<int> labels,
+ int num_components = 0) :
+ _num_components(num_components)
+ {
+ this->compute(src, labels); //! compute eigenvectors and eigenvalues
+ }
+
+ // Initializes and performs a Discriminant Analysis with Fisher's
+ // Optimization Criterion on given data in src and corresponding labels
+ // in labels. If 0 (or less) number of components are given, they are
+ // automatically determined for given data in computation.
+ LDA(InputArrayOfArrays src, InputArray labels,
+ int num_components = 0) :
+ _num_components(num_components)
+ {
+ this->compute(src, labels); //! compute eigenvectors and eigenvalues
+ }
+
+ // Serializes this object to a given filename.
+ void save(const string& filename) const;
+
+ // Deserializes this object from a given filename.
+ void load(const string& filename);
+
+ // Serializes this object to a given cv::FileStorage.
+ void save(FileStorage& fs) const;
+
+ // Deserializes this object from a given cv::FileStorage.
+ void load(const FileStorage& node);
+
+ // Destructor.
+ ~LDA() {}
+
+ /** Compute the discriminants for data in src (row aligned) and labels.
+ */
+ void compute(InputArrayOfArrays src, InputArray labels);
+
+ /** Projects samples into the LDA subspace.
+ src may be one or more row aligned samples.
+ */
+ Mat project(InputArray src);
+
+ /** Reconstructs projections from the LDA subspace.
+ src may be one or more row aligned projections.
+ */
+ Mat reconstruct(InputArray src);
+
+ // Returns the eigenvectors of this LDA.
+ Mat eigenvectors() const { return _eigenvectors; };
+
+ // Returns the eigenvalues of this LDA.
+ Mat eigenvalues() const { return _eigenvalues; }
+
+ protected:
+ bool _dataAsRow; // unused, but needed for ABI compatibility.
+ int _num_components;
+ Mat _eigenvectors;
+ Mat _eigenvalues;
+
+ void lda(InputArrayOfArrays src, InputArray labels);
+ };
+
+ class CV_EXPORTS_W FaceRecognizer : public Algorithm
+ {
+ public:
+ //! virtual destructor
+ virtual ~FaceRecognizer() {}
+
+ // Trains a FaceRecognizer.
+ CV_WRAP virtual void train(InputArrayOfArrays src, InputArray labels) = 0;
+
+ // Updates a FaceRecognizer.
+ CV_WRAP void update(InputArrayOfArrays src, InputArray labels);
+
+ // Gets a prediction from a FaceRecognizer.
+ virtual int predict(InputArray src) const = 0;
+
+ // Predicts the label and confidence for a given sample.
+ CV_WRAP virtual void predict(InputArray src, CV_OUT int &label, CV_OUT double &confidence) const = 0;
+
+ // Serializes this object to a given filename.
+ CV_WRAP virtual void save(const string& filename) const;
+
+ // Deserializes this object from a given filename.
+ CV_WRAP virtual void load(const string& filename);
+
+ // Serializes this object to a given cv::FileStorage.
+ virtual void save(FileStorage& fs) const = 0;
+
+ // Deserializes this object from a given cv::FileStorage.
+ virtual void load(const FileStorage& fs) = 0;
+
+ // Sets additional information as pairs label - info.
+ void setLabelsInfo(const std::map<int, string>& labelsInfo);
+
+ // Gets string information by label
+ string getLabelInfo(const int &label);
+
+ // Gets labels by string
+ vector<int> getLabelsByString(const string& str);
+ };
+
+ CV_EXPORTS_W Ptr<FaceRecognizer> createEigenFaceRecognizer(int num_components = 0, double threshold = DBL_MAX);
+ CV_EXPORTS_W Ptr<FaceRecognizer> createFisherFaceRecognizer(int num_components = 0, double threshold = DBL_MAX);
+ CV_EXPORTS_W Ptr<FaceRecognizer> createLBPHFaceRecognizer(int radius=1, int neighbors=8,
+ int grid_x=8, int grid_y=8, double threshold = DBL_MAX);
+
+ enum
+ {
+ COLORMAP_AUTUMN = 0,
+ COLORMAP_BONE = 1,
+ COLORMAP_JET = 2,
+ COLORMAP_WINTER = 3,
+ COLORMAP_RAINBOW = 4,
+ COLORMAP_OCEAN = 5,
+ COLORMAP_SUMMER = 6,
+ COLORMAP_SPRING = 7,
+ COLORMAP_COOL = 8,
+ COLORMAP_HSV = 9,
+ COLORMAP_PINK = 10,
+ COLORMAP_HOT = 11
+ };
+
+ CV_EXPORTS_W void applyColorMap(InputArray src, OutputArray dst, int colormap);
+
+ CV_EXPORTS bool initModule_contrib();
+}
+
+#include "opencv2/contrib/retina.hpp"
+
+#include "opencv2/contrib/openfabmap.hpp"
+
+#endif
+
+#endif