summaryrefslogtreecommitdiff
path: root/2.3-1/thirdparty/includes/OpenCV/opencv2/calib3d/calib3d.hpp
diff options
context:
space:
mode:
Diffstat (limited to '2.3-1/thirdparty/includes/OpenCV/opencv2/calib3d/calib3d.hpp')
-rw-r--r--2.3-1/thirdparty/includes/OpenCV/opencv2/calib3d/calib3d.hpp811
1 files changed, 811 insertions, 0 deletions
diff --git a/2.3-1/thirdparty/includes/OpenCV/opencv2/calib3d/calib3d.hpp b/2.3-1/thirdparty/includes/OpenCV/opencv2/calib3d/calib3d.hpp
new file mode 100644
index 00000000..5e9cde8e
--- /dev/null
+++ b/2.3-1/thirdparty/includes/OpenCV/opencv2/calib3d/calib3d.hpp
@@ -0,0 +1,811 @@
+/*M///////////////////////////////////////////////////////////////////////////////////////
+//
+// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
+//
+// By downloading, copying, installing or using the software you agree to this license.
+// If you do not agree to this license, do not download, install,
+// copy or use the software.
+//
+//
+// License Agreement
+// For Open Source Computer Vision Library
+//
+// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
+// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
+// Third party copyrights are property of their respective owners.
+//
+// Redistribution and use in source and binary forms, with or without modification,
+// are permitted provided that the following conditions are met:
+//
+// * Redistribution's of source code must retain the above copyright notice,
+// this list of conditions and the following disclaimer.
+//
+// * Redistribution's in binary form must reproduce the above copyright notice,
+// this list of conditions and the following disclaimer in the documentation
+// and/or other materials provided with the distribution.
+//
+// * The name of the copyright holders may not be used to endorse or promote products
+// derived from this software without specific prior written permission.
+//
+// This software is provided by the copyright holders and contributors "as is" and
+// any express or implied warranties, including, but not limited to, the implied
+// warranties of merchantability and fitness for a particular purpose are disclaimed.
+// In no event shall the Intel Corporation or contributors be liable for any direct,
+// indirect, incidental, special, exemplary, or consequential damages
+// (including, but not limited to, procurement of substitute goods or services;
+// loss of use, data, or profits; or business interruption) however caused
+// and on any theory of liability, whether in contract, strict liability,
+// or tort (including negligence or otherwise) arising in any way out of
+// the use of this software, even if advised of the possibility of such damage.
+//
+//M*/
+
+#ifndef __OPENCV_CALIB3D_HPP__
+#define __OPENCV_CALIB3D_HPP__
+
+#include "opencv2/core/core.hpp"
+#include "opencv2/features2d/features2d.hpp"
+#include "opencv2/core/affine.hpp"
+
+#ifdef __cplusplus
+extern "C" {
+#endif
+
+/****************************************************************************************\
+* Camera Calibration, Pose Estimation and Stereo *
+\****************************************************************************************/
+
+typedef struct CvPOSITObject CvPOSITObject;
+
+/* Allocates and initializes CvPOSITObject structure before doing cvPOSIT */
+CVAPI(CvPOSITObject*) cvCreatePOSITObject( CvPoint3D32f* points, int point_count );
+
+
+/* Runs POSIT (POSe from ITeration) algorithm for determining 3d position of
+ an object given its model and projection in a weak-perspective case */
+CVAPI(void) cvPOSIT( CvPOSITObject* posit_object, CvPoint2D32f* image_points,
+ double focal_length, CvTermCriteria criteria,
+ float* rotation_matrix, float* translation_vector);
+
+/* Releases CvPOSITObject structure */
+CVAPI(void) cvReleasePOSITObject( CvPOSITObject** posit_object );
+
+/* updates the number of RANSAC iterations */
+CVAPI(int) cvRANSACUpdateNumIters( double p, double err_prob,
+ int model_points, int max_iters );
+
+CVAPI(void) cvConvertPointsHomogeneous( const CvMat* src, CvMat* dst );
+
+/* Calculates fundamental matrix given a set of corresponding points */
+#define CV_FM_7POINT 1
+#define CV_FM_8POINT 2
+
+#define CV_LMEDS 4
+#define CV_RANSAC 8
+
+#define CV_FM_LMEDS_ONLY CV_LMEDS
+#define CV_FM_RANSAC_ONLY CV_RANSAC
+#define CV_FM_LMEDS CV_LMEDS
+#define CV_FM_RANSAC CV_RANSAC
+
+enum
+{
+ CV_ITERATIVE = 0,
+ CV_EPNP = 1, // F.Moreno-Noguer, V.Lepetit and P.Fua "EPnP: Efficient Perspective-n-Point Camera Pose Estimation"
+ CV_P3P = 2 // X.S. Gao, X.-R. Hou, J. Tang, H.-F. Chang; "Complete Solution Classification for the Perspective-Three-Point Problem"
+};
+
+CVAPI(int) cvFindFundamentalMat( const CvMat* points1, const CvMat* points2,
+ CvMat* fundamental_matrix,
+ int method CV_DEFAULT(CV_FM_RANSAC),
+ double param1 CV_DEFAULT(3.), double param2 CV_DEFAULT(0.99),
+ CvMat* status CV_DEFAULT(NULL) );
+
+/* For each input point on one of images
+ computes parameters of the corresponding
+ epipolar line on the other image */
+CVAPI(void) cvComputeCorrespondEpilines( const CvMat* points,
+ int which_image,
+ const CvMat* fundamental_matrix,
+ CvMat* correspondent_lines );
+
+/* Triangulation functions */
+
+CVAPI(void) cvTriangulatePoints(CvMat* projMatr1, CvMat* projMatr2,
+ CvMat* projPoints1, CvMat* projPoints2,
+ CvMat* points4D);
+
+CVAPI(void) cvCorrectMatches(CvMat* F, CvMat* points1, CvMat* points2,
+ CvMat* new_points1, CvMat* new_points2);
+
+
+/* Computes the optimal new camera matrix according to the free scaling parameter alpha:
+ alpha=0 - only valid pixels will be retained in the undistorted image
+ alpha=1 - all the source image pixels will be retained in the undistorted image
+*/
+CVAPI(void) cvGetOptimalNewCameraMatrix( const CvMat* camera_matrix,
+ const CvMat* dist_coeffs,
+ CvSize image_size, double alpha,
+ CvMat* new_camera_matrix,
+ CvSize new_imag_size CV_DEFAULT(cvSize(0,0)),
+ CvRect* valid_pixel_ROI CV_DEFAULT(0),
+ int center_principal_point CV_DEFAULT(0));
+
+/* Converts rotation vector to rotation matrix or vice versa */
+CVAPI(int) cvRodrigues2( const CvMat* src, CvMat* dst,
+ CvMat* jacobian CV_DEFAULT(0) );
+
+/* Finds perspective transformation between the object plane and image (view) plane */
+CVAPI(int) cvFindHomography( const CvMat* src_points,
+ const CvMat* dst_points,
+ CvMat* homography,
+ int method CV_DEFAULT(0),
+ double ransacReprojThreshold CV_DEFAULT(3),
+ CvMat* mask CV_DEFAULT(0));
+
+/* Computes RQ decomposition for 3x3 matrices */
+CVAPI(void) cvRQDecomp3x3( const CvMat *matrixM, CvMat *matrixR, CvMat *matrixQ,
+ CvMat *matrixQx CV_DEFAULT(NULL),
+ CvMat *matrixQy CV_DEFAULT(NULL),
+ CvMat *matrixQz CV_DEFAULT(NULL),
+ CvPoint3D64f *eulerAngles CV_DEFAULT(NULL));
+
+/* Computes projection matrix decomposition */
+CVAPI(void) cvDecomposeProjectionMatrix( const CvMat *projMatr, CvMat *calibMatr,
+ CvMat *rotMatr, CvMat *posVect,
+ CvMat *rotMatrX CV_DEFAULT(NULL),
+ CvMat *rotMatrY CV_DEFAULT(NULL),
+ CvMat *rotMatrZ CV_DEFAULT(NULL),
+ CvPoint3D64f *eulerAngles CV_DEFAULT(NULL));
+
+/* Computes d(AB)/dA and d(AB)/dB */
+CVAPI(void) cvCalcMatMulDeriv( const CvMat* A, const CvMat* B, CvMat* dABdA, CvMat* dABdB );
+
+/* Computes r3 = rodrigues(rodrigues(r2)*rodrigues(r1)),
+ t3 = rodrigues(r2)*t1 + t2 and the respective derivatives */
+CVAPI(void) cvComposeRT( const CvMat* _rvec1, const CvMat* _tvec1,
+ const CvMat* _rvec2, const CvMat* _tvec2,
+ CvMat* _rvec3, CvMat* _tvec3,
+ CvMat* dr3dr1 CV_DEFAULT(0), CvMat* dr3dt1 CV_DEFAULT(0),
+ CvMat* dr3dr2 CV_DEFAULT(0), CvMat* dr3dt2 CV_DEFAULT(0),
+ CvMat* dt3dr1 CV_DEFAULT(0), CvMat* dt3dt1 CV_DEFAULT(0),
+ CvMat* dt3dr2 CV_DEFAULT(0), CvMat* dt3dt2 CV_DEFAULT(0) );
+
+/* Projects object points to the view plane using
+ the specified extrinsic and intrinsic camera parameters */
+CVAPI(void) cvProjectPoints2( const CvMat* object_points, const CvMat* rotation_vector,
+ const CvMat* translation_vector, const CvMat* camera_matrix,
+ const CvMat* distortion_coeffs, CvMat* image_points,
+ CvMat* dpdrot CV_DEFAULT(NULL), CvMat* dpdt CV_DEFAULT(NULL),
+ CvMat* dpdf CV_DEFAULT(NULL), CvMat* dpdc CV_DEFAULT(NULL),
+ CvMat* dpddist CV_DEFAULT(NULL),
+ double aspect_ratio CV_DEFAULT(0));
+
+/* Finds extrinsic camera parameters from
+ a few known corresponding point pairs and intrinsic parameters */
+CVAPI(void) cvFindExtrinsicCameraParams2( const CvMat* object_points,
+ const CvMat* image_points,
+ const CvMat* camera_matrix,
+ const CvMat* distortion_coeffs,
+ CvMat* rotation_vector,
+ CvMat* translation_vector,
+ int use_extrinsic_guess CV_DEFAULT(0) );
+
+/* Computes initial estimate of the intrinsic camera parameters
+ in case of planar calibration target (e.g. chessboard) */
+CVAPI(void) cvInitIntrinsicParams2D( const CvMat* object_points,
+ const CvMat* image_points,
+ const CvMat* npoints, CvSize image_size,
+ CvMat* camera_matrix,
+ double aspect_ratio CV_DEFAULT(1.) );
+
+#define CV_CALIB_CB_ADAPTIVE_THRESH 1
+#define CV_CALIB_CB_NORMALIZE_IMAGE 2
+#define CV_CALIB_CB_FILTER_QUADS 4
+#define CV_CALIB_CB_FAST_CHECK 8
+
+// Performs a fast check if a chessboard is in the input image. This is a workaround to
+// a problem of cvFindChessboardCorners being slow on images with no chessboard
+// - src: input image
+// - size: chessboard size
+// Returns 1 if a chessboard can be in this image and findChessboardCorners should be called,
+// 0 if there is no chessboard, -1 in case of error
+CVAPI(int) cvCheckChessboard(IplImage* src, CvSize size);
+
+ /* Detects corners on a chessboard calibration pattern */
+CVAPI(int) cvFindChessboardCorners( const void* image, CvSize pattern_size,
+ CvPoint2D32f* corners,
+ int* corner_count CV_DEFAULT(NULL),
+ int flags CV_DEFAULT(CV_CALIB_CB_ADAPTIVE_THRESH+CV_CALIB_CB_NORMALIZE_IMAGE) );
+
+/* Draws individual chessboard corners or the whole chessboard detected */
+CVAPI(void) cvDrawChessboardCorners( CvArr* image, CvSize pattern_size,
+ CvPoint2D32f* corners,
+ int count, int pattern_was_found );
+
+#define CV_CALIB_USE_INTRINSIC_GUESS 1
+#define CV_CALIB_FIX_ASPECT_RATIO 2
+#define CV_CALIB_FIX_PRINCIPAL_POINT 4
+#define CV_CALIB_ZERO_TANGENT_DIST 8
+#define CV_CALIB_FIX_FOCAL_LENGTH 16
+#define CV_CALIB_FIX_K1 32
+#define CV_CALIB_FIX_K2 64
+#define CV_CALIB_FIX_K3 128
+#define CV_CALIB_FIX_K4 2048
+#define CV_CALIB_FIX_K5 4096
+#define CV_CALIB_FIX_K6 8192
+#define CV_CALIB_RATIONAL_MODEL 16384
+
+/* Finds intrinsic and extrinsic camera parameters
+ from a few views of known calibration pattern */
+CVAPI(double) cvCalibrateCamera2( const CvMat* object_points,
+ const CvMat* image_points,
+ const CvMat* point_counts,
+ CvSize image_size,
+ CvMat* camera_matrix,
+ CvMat* distortion_coeffs,
+ CvMat* rotation_vectors CV_DEFAULT(NULL),
+ CvMat* translation_vectors CV_DEFAULT(NULL),
+ int flags CV_DEFAULT(0),
+ CvTermCriteria term_crit CV_DEFAULT(cvTermCriteria(
+ CV_TERMCRIT_ITER+CV_TERMCRIT_EPS,30,DBL_EPSILON)) );
+
+/* Computes various useful characteristics of the camera from the data computed by
+ cvCalibrateCamera2 */
+CVAPI(void) cvCalibrationMatrixValues( const CvMat *camera_matrix,
+ CvSize image_size,
+ double aperture_width CV_DEFAULT(0),
+ double aperture_height CV_DEFAULT(0),
+ double *fovx CV_DEFAULT(NULL),
+ double *fovy CV_DEFAULT(NULL),
+ double *focal_length CV_DEFAULT(NULL),
+ CvPoint2D64f *principal_point CV_DEFAULT(NULL),
+ double *pixel_aspect_ratio CV_DEFAULT(NULL));
+
+#define CV_CALIB_FIX_INTRINSIC 256
+#define CV_CALIB_SAME_FOCAL_LENGTH 512
+
+/* Computes the transformation from one camera coordinate system to another one
+ from a few correspondent views of the same calibration target. Optionally, calibrates
+ both cameras */
+CVAPI(double) cvStereoCalibrate( const CvMat* object_points, const CvMat* image_points1,
+ const CvMat* image_points2, const CvMat* npoints,
+ CvMat* camera_matrix1, CvMat* dist_coeffs1,
+ CvMat* camera_matrix2, CvMat* dist_coeffs2,
+ CvSize image_size, CvMat* R, CvMat* T,
+ CvMat* E CV_DEFAULT(0), CvMat* F CV_DEFAULT(0),
+ CvTermCriteria term_crit CV_DEFAULT(cvTermCriteria(
+ CV_TERMCRIT_ITER+CV_TERMCRIT_EPS,30,1e-6)),
+ int flags CV_DEFAULT(CV_CALIB_FIX_INTRINSIC));
+
+#define CV_CALIB_ZERO_DISPARITY 1024
+
+/* Computes 3D rotations (+ optional shift) for each camera coordinate system to make both
+ views parallel (=> to make all the epipolar lines horizontal or vertical) */
+CVAPI(void) cvStereoRectify( const CvMat* camera_matrix1, const CvMat* camera_matrix2,
+ const CvMat* dist_coeffs1, const CvMat* dist_coeffs2,
+ CvSize image_size, const CvMat* R, const CvMat* T,
+ CvMat* R1, CvMat* R2, CvMat* P1, CvMat* P2,
+ CvMat* Q CV_DEFAULT(0),
+ int flags CV_DEFAULT(CV_CALIB_ZERO_DISPARITY),
+ double alpha CV_DEFAULT(-1),
+ CvSize new_image_size CV_DEFAULT(cvSize(0,0)),
+ CvRect* valid_pix_ROI1 CV_DEFAULT(0),
+ CvRect* valid_pix_ROI2 CV_DEFAULT(0));
+
+/* Computes rectification transformations for uncalibrated pair of images using a set
+ of point correspondences */
+CVAPI(int) cvStereoRectifyUncalibrated( const CvMat* points1, const CvMat* points2,
+ const CvMat* F, CvSize img_size,
+ CvMat* H1, CvMat* H2,
+ double threshold CV_DEFAULT(5));
+
+
+
+/* stereo correspondence parameters and functions */
+
+#define CV_STEREO_BM_NORMALIZED_RESPONSE 0
+#define CV_STEREO_BM_XSOBEL 1
+
+/* Block matching algorithm structure */
+typedef struct CvStereoBMState
+{
+ // pre-filtering (normalization of input images)
+ int preFilterType; // =CV_STEREO_BM_NORMALIZED_RESPONSE now
+ int preFilterSize; // averaging window size: ~5x5..21x21
+ int preFilterCap; // the output of pre-filtering is clipped by [-preFilterCap,preFilterCap]
+
+ // correspondence using Sum of Absolute Difference (SAD)
+ int SADWindowSize; // ~5x5..21x21
+ int minDisparity; // minimum disparity (can be negative)
+ int numberOfDisparities; // maximum disparity - minimum disparity (> 0)
+
+ // post-filtering
+ int textureThreshold; // the disparity is only computed for pixels
+ // with textured enough neighborhood
+ int uniquenessRatio; // accept the computed disparity d* only if
+ // SAD(d) >= SAD(d*)*(1 + uniquenessRatio/100.)
+ // for any d != d*+/-1 within the search range.
+ int speckleWindowSize; // disparity variation window
+ int speckleRange; // acceptable range of variation in window
+
+ int trySmallerWindows; // if 1, the results may be more accurate,
+ // at the expense of slower processing
+ CvRect roi1, roi2;
+ int disp12MaxDiff;
+
+ // temporary buffers
+ CvMat* preFilteredImg0;
+ CvMat* preFilteredImg1;
+ CvMat* slidingSumBuf;
+ CvMat* cost;
+ CvMat* disp;
+} CvStereoBMState;
+
+#define CV_STEREO_BM_BASIC 0
+#define CV_STEREO_BM_FISH_EYE 1
+#define CV_STEREO_BM_NARROW 2
+
+CVAPI(CvStereoBMState*) cvCreateStereoBMState(int preset CV_DEFAULT(CV_STEREO_BM_BASIC),
+ int numberOfDisparities CV_DEFAULT(0));
+
+CVAPI(void) cvReleaseStereoBMState( CvStereoBMState** state );
+
+CVAPI(void) cvFindStereoCorrespondenceBM( const CvArr* left, const CvArr* right,
+ CvArr* disparity, CvStereoBMState* state );
+
+CVAPI(CvRect) cvGetValidDisparityROI( CvRect roi1, CvRect roi2, int minDisparity,
+ int numberOfDisparities, int SADWindowSize );
+
+CVAPI(void) cvValidateDisparity( CvArr* disparity, const CvArr* cost,
+ int minDisparity, int numberOfDisparities,
+ int disp12MaxDiff CV_DEFAULT(1) );
+
+/* Reprojects the computed disparity image to the 3D space using the specified 4x4 matrix */
+CVAPI(void) cvReprojectImageTo3D( const CvArr* disparityImage,
+ CvArr* _3dImage, const CvMat* Q,
+ int handleMissingValues CV_DEFAULT(0) );
+
+
+#ifdef __cplusplus
+}
+
+//////////////////////////////////////////////////////////////////////////////////////////
+class CV_EXPORTS CvLevMarq
+{
+public:
+ CvLevMarq();
+ CvLevMarq( int nparams, int nerrs, CvTermCriteria criteria=
+ cvTermCriteria(CV_TERMCRIT_EPS+CV_TERMCRIT_ITER,30,DBL_EPSILON),
+ bool completeSymmFlag=false );
+ ~CvLevMarq();
+ void init( int nparams, int nerrs, CvTermCriteria criteria=
+ cvTermCriteria(CV_TERMCRIT_EPS+CV_TERMCRIT_ITER,30,DBL_EPSILON),
+ bool completeSymmFlag=false );
+ bool update( const CvMat*& param, CvMat*& J, CvMat*& err );
+ bool updateAlt( const CvMat*& param, CvMat*& JtJ, CvMat*& JtErr, double*& errNorm );
+
+ void clear();
+ void step();
+ enum { DONE=0, STARTED=1, CALC_J=2, CHECK_ERR=3 };
+
+ cv::Ptr<CvMat> mask;
+ cv::Ptr<CvMat> prevParam;
+ cv::Ptr<CvMat> param;
+ cv::Ptr<CvMat> J;
+ cv::Ptr<CvMat> err;
+ cv::Ptr<CvMat> JtJ;
+ cv::Ptr<CvMat> JtJN;
+ cv::Ptr<CvMat> JtErr;
+ cv::Ptr<CvMat> JtJV;
+ cv::Ptr<CvMat> JtJW;
+ double prevErrNorm, errNorm;
+ int lambdaLg10;
+ CvTermCriteria criteria;
+ int state;
+ int iters;
+ bool completeSymmFlag;
+};
+
+namespace cv
+{
+//! converts rotation vector to rotation matrix or vice versa using Rodrigues transformation
+CV_EXPORTS_W void Rodrigues(InputArray src, OutputArray dst, OutputArray jacobian=noArray());
+
+//! type of the robust estimation algorithm
+enum
+{
+ LMEDS=CV_LMEDS, //!< least-median algorithm
+ RANSAC=CV_RANSAC //!< RANSAC algorithm
+};
+
+//! computes the best-fit perspective transformation mapping srcPoints to dstPoints.
+CV_EXPORTS_W Mat findHomography( InputArray srcPoints, InputArray dstPoints,
+ int method=0, double ransacReprojThreshold=3,
+ OutputArray mask=noArray());
+
+//! variant of findHomography for backward compatibility
+CV_EXPORTS Mat findHomography( InputArray srcPoints, InputArray dstPoints,
+ OutputArray mask, int method=0, double ransacReprojThreshold=3);
+
+//! Computes RQ decomposition of 3x3 matrix
+CV_EXPORTS_W Vec3d RQDecomp3x3( InputArray src, OutputArray mtxR, OutputArray mtxQ,
+ OutputArray Qx=noArray(),
+ OutputArray Qy=noArray(),
+ OutputArray Qz=noArray());
+
+//! Decomposes the projection matrix into camera matrix and the rotation martix and the translation vector
+CV_EXPORTS_W void decomposeProjectionMatrix( InputArray projMatrix, OutputArray cameraMatrix,
+ OutputArray rotMatrix, OutputArray transVect,
+ OutputArray rotMatrixX=noArray(),
+ OutputArray rotMatrixY=noArray(),
+ OutputArray rotMatrixZ=noArray(),
+ OutputArray eulerAngles=noArray() );
+
+//! computes derivatives of the matrix product w.r.t each of the multiplied matrix coefficients
+CV_EXPORTS_W void matMulDeriv( InputArray A, InputArray B,
+ OutputArray dABdA,
+ OutputArray dABdB );
+
+//! composes 2 [R|t] transformations together. Also computes the derivatives of the result w.r.t the arguments
+CV_EXPORTS_W void composeRT( InputArray rvec1, InputArray tvec1,
+ InputArray rvec2, InputArray tvec2,
+ OutputArray rvec3, OutputArray tvec3,
+ OutputArray dr3dr1=noArray(), OutputArray dr3dt1=noArray(),
+ OutputArray dr3dr2=noArray(), OutputArray dr3dt2=noArray(),
+ OutputArray dt3dr1=noArray(), OutputArray dt3dt1=noArray(),
+ OutputArray dt3dr2=noArray(), OutputArray dt3dt2=noArray() );
+
+//! projects points from the model coordinate space to the image coordinates. Also computes derivatives of the image coordinates w.r.t the intrinsic and extrinsic camera parameters
+CV_EXPORTS_W void projectPoints( InputArray objectPoints,
+ InputArray rvec, InputArray tvec,
+ InputArray cameraMatrix, InputArray distCoeffs,
+ OutputArray imagePoints,
+ OutputArray jacobian=noArray(),
+ double aspectRatio=0 );
+
+//! computes the camera pose from a few 3D points and the corresponding projections. The outliers are not handled.
+enum
+{
+ ITERATIVE=CV_ITERATIVE,
+ EPNP=CV_EPNP,
+ P3P=CV_P3P
+};
+CV_EXPORTS_W bool solvePnP( InputArray objectPoints, InputArray imagePoints,
+ InputArray cameraMatrix, InputArray distCoeffs,
+ OutputArray rvec, OutputArray tvec,
+ bool useExtrinsicGuess=false, int flags=ITERATIVE);
+
+//! computes the camera pose from a few 3D points and the corresponding projections. The outliers are possible.
+CV_EXPORTS_W void solvePnPRansac( InputArray objectPoints,
+ InputArray imagePoints,
+ InputArray cameraMatrix,
+ InputArray distCoeffs,
+ OutputArray rvec,
+ OutputArray tvec,
+ bool useExtrinsicGuess = false,
+ int iterationsCount = 100,
+ float reprojectionError = 8.0,
+ int minInliersCount = 100,
+ OutputArray inliers = noArray(),
+ int flags = ITERATIVE);
+
+//! initializes camera matrix from a few 3D points and the corresponding projections.
+CV_EXPORTS_W Mat initCameraMatrix2D( InputArrayOfArrays objectPoints,
+ InputArrayOfArrays imagePoints,
+ Size imageSize, double aspectRatio=1. );
+
+enum { CALIB_CB_ADAPTIVE_THRESH = 1, CALIB_CB_NORMALIZE_IMAGE = 2,
+ CALIB_CB_FILTER_QUADS = 4, CALIB_CB_FAST_CHECK = 8 };
+
+//! finds checkerboard pattern of the specified size in the image
+CV_EXPORTS_W bool findChessboardCorners( InputArray image, Size patternSize,
+ OutputArray corners,
+ int flags=CALIB_CB_ADAPTIVE_THRESH+CALIB_CB_NORMALIZE_IMAGE );
+
+//! finds subpixel-accurate positions of the chessboard corners
+CV_EXPORTS bool find4QuadCornerSubpix(InputArray img, InputOutputArray corners, Size region_size);
+
+//! draws the checkerboard pattern (found or partly found) in the image
+CV_EXPORTS_W void drawChessboardCorners( InputOutputArray image, Size patternSize,
+ InputArray corners, bool patternWasFound );
+
+enum { CALIB_CB_SYMMETRIC_GRID = 1, CALIB_CB_ASYMMETRIC_GRID = 2,
+ CALIB_CB_CLUSTERING = 4 };
+
+//! finds circles' grid pattern of the specified size in the image
+CV_EXPORTS_W bool findCirclesGrid( InputArray image, Size patternSize,
+ OutputArray centers, int flags=CALIB_CB_SYMMETRIC_GRID,
+ const Ptr<FeatureDetector> &blobDetector = new SimpleBlobDetector());
+
+//! the deprecated function. Use findCirclesGrid() instead of it.
+CV_EXPORTS_W bool findCirclesGridDefault( InputArray image, Size patternSize,
+ OutputArray centers, int flags=CALIB_CB_SYMMETRIC_GRID );
+enum
+{
+ CALIB_USE_INTRINSIC_GUESS = CV_CALIB_USE_INTRINSIC_GUESS,
+ CALIB_FIX_ASPECT_RATIO = CV_CALIB_FIX_ASPECT_RATIO,
+ CALIB_FIX_PRINCIPAL_POINT = CV_CALIB_FIX_PRINCIPAL_POINT,
+ CALIB_ZERO_TANGENT_DIST = CV_CALIB_ZERO_TANGENT_DIST,
+ CALIB_FIX_FOCAL_LENGTH = CV_CALIB_FIX_FOCAL_LENGTH,
+ CALIB_FIX_K1 = CV_CALIB_FIX_K1,
+ CALIB_FIX_K2 = CV_CALIB_FIX_K2,
+ CALIB_FIX_K3 = CV_CALIB_FIX_K3,
+ CALIB_FIX_K4 = CV_CALIB_FIX_K4,
+ CALIB_FIX_K5 = CV_CALIB_FIX_K5,
+ CALIB_FIX_K6 = CV_CALIB_FIX_K6,
+ CALIB_RATIONAL_MODEL = CV_CALIB_RATIONAL_MODEL,
+ // only for stereo
+ CALIB_FIX_INTRINSIC = CV_CALIB_FIX_INTRINSIC,
+ CALIB_SAME_FOCAL_LENGTH = CV_CALIB_SAME_FOCAL_LENGTH,
+ // for stereo rectification
+ CALIB_ZERO_DISPARITY = CV_CALIB_ZERO_DISPARITY
+};
+
+//! finds intrinsic and extrinsic camera parameters from several fews of a known calibration pattern.
+CV_EXPORTS_W double calibrateCamera( InputArrayOfArrays objectPoints,
+ InputArrayOfArrays imagePoints,
+ Size imageSize,
+ CV_OUT InputOutputArray cameraMatrix,
+ CV_OUT InputOutputArray distCoeffs,
+ OutputArrayOfArrays rvecs, OutputArrayOfArrays tvecs,
+ int flags=0, TermCriteria criteria = TermCriteria(
+ TermCriteria::COUNT+TermCriteria::EPS, 30, DBL_EPSILON) );
+
+//! computes several useful camera characteristics from the camera matrix, camera frame resolution and the physical sensor size.
+CV_EXPORTS_W void calibrationMatrixValues( InputArray cameraMatrix,
+ Size imageSize,
+ double apertureWidth,
+ double apertureHeight,
+ CV_OUT double& fovx,
+ CV_OUT double& fovy,
+ CV_OUT double& focalLength,
+ CV_OUT Point2d& principalPoint,
+ CV_OUT double& aspectRatio );
+
+//! finds intrinsic and extrinsic parameters of a stereo camera
+CV_EXPORTS_W double stereoCalibrate( InputArrayOfArrays objectPoints,
+ InputArrayOfArrays imagePoints1,
+ InputArrayOfArrays imagePoints2,
+ CV_OUT InputOutputArray cameraMatrix1,
+ CV_OUT InputOutputArray distCoeffs1,
+ CV_OUT InputOutputArray cameraMatrix2,
+ CV_OUT InputOutputArray distCoeffs2,
+ Size imageSize, OutputArray R,
+ OutputArray T, OutputArray E, OutputArray F,
+ TermCriteria criteria = TermCriteria(TermCriteria::COUNT+TermCriteria::EPS, 30, 1e-6),
+ int flags=CALIB_FIX_INTRINSIC );
+
+
+//! computes the rectification transformation for a stereo camera from its intrinsic and extrinsic parameters
+CV_EXPORTS_W void stereoRectify( InputArray cameraMatrix1, InputArray distCoeffs1,
+ InputArray cameraMatrix2, InputArray distCoeffs2,
+ Size imageSize, InputArray R, InputArray T,
+ OutputArray R1, OutputArray R2,
+ OutputArray P1, OutputArray P2,
+ OutputArray Q, int flags=CALIB_ZERO_DISPARITY,
+ double alpha=-1, Size newImageSize=Size(),
+ CV_OUT Rect* validPixROI1=0, CV_OUT Rect* validPixROI2=0 );
+
+//! computes the rectification transformation for an uncalibrated stereo camera (zero distortion is assumed)
+CV_EXPORTS_W bool stereoRectifyUncalibrated( InputArray points1, InputArray points2,
+ InputArray F, Size imgSize,
+ OutputArray H1, OutputArray H2,
+ double threshold=5 );
+
+//! computes the rectification transformations for 3-head camera, where all the heads are on the same line.
+CV_EXPORTS_W float rectify3Collinear( InputArray cameraMatrix1, InputArray distCoeffs1,
+ InputArray cameraMatrix2, InputArray distCoeffs2,
+ InputArray cameraMatrix3, InputArray distCoeffs3,
+ InputArrayOfArrays imgpt1, InputArrayOfArrays imgpt3,
+ Size imageSize, InputArray R12, InputArray T12,
+ InputArray R13, InputArray T13,
+ OutputArray R1, OutputArray R2, OutputArray R3,
+ OutputArray P1, OutputArray P2, OutputArray P3,
+ OutputArray Q, double alpha, Size newImgSize,
+ CV_OUT Rect* roi1, CV_OUT Rect* roi2, int flags );
+
+//! returns the optimal new camera matrix
+CV_EXPORTS_W Mat getOptimalNewCameraMatrix( InputArray cameraMatrix, InputArray distCoeffs,
+ Size imageSize, double alpha, Size newImgSize=Size(),
+ CV_OUT Rect* validPixROI=0, bool centerPrincipalPoint=false);
+
+//! converts point coordinates from normal pixel coordinates to homogeneous coordinates ((x,y)->(x,y,1))
+CV_EXPORTS_W void convertPointsToHomogeneous( InputArray src, OutputArray dst );
+
+//! converts point coordinates from homogeneous to normal pixel coordinates ((x,y,z)->(x/z, y/z))
+CV_EXPORTS_W void convertPointsFromHomogeneous( InputArray src, OutputArray dst );
+
+//! for backward compatibility
+CV_EXPORTS void convertPointsHomogeneous( InputArray src, OutputArray dst );
+
+//! the algorithm for finding fundamental matrix
+enum
+{
+ FM_7POINT = CV_FM_7POINT, //!< 7-point algorithm
+ FM_8POINT = CV_FM_8POINT, //!< 8-point algorithm
+ FM_LMEDS = CV_FM_LMEDS, //!< least-median algorithm
+ FM_RANSAC = CV_FM_RANSAC //!< RANSAC algorithm
+};
+
+//! finds fundamental matrix from a set of corresponding 2D points
+CV_EXPORTS_W Mat findFundamentalMat( InputArray points1, InputArray points2,
+ int method=FM_RANSAC,
+ double param1=3., double param2=0.99,
+ OutputArray mask=noArray());
+
+//! variant of findFundamentalMat for backward compatibility
+CV_EXPORTS Mat findFundamentalMat( InputArray points1, InputArray points2,
+ OutputArray mask, int method=FM_RANSAC,
+ double param1=3., double param2=0.99);
+
+//! finds coordinates of epipolar lines corresponding the specified points
+CV_EXPORTS_W void computeCorrespondEpilines( InputArray points,
+ int whichImage, InputArray F,
+ OutputArray lines );
+
+CV_EXPORTS_W void triangulatePoints( InputArray projMatr1, InputArray projMatr2,
+ InputArray projPoints1, InputArray projPoints2,
+ OutputArray points4D );
+
+CV_EXPORTS_W void correctMatches( InputArray F, InputArray points1, InputArray points2,
+ OutputArray newPoints1, OutputArray newPoints2 );
+
+template<> CV_EXPORTS void Ptr<CvStereoBMState>::delete_obj();
+
+/*!
+ Block Matching Stereo Correspondence Algorithm
+
+ The class implements BM stereo correspondence algorithm by K. Konolige.
+*/
+class CV_EXPORTS_W StereoBM
+{
+public:
+ enum { PREFILTER_NORMALIZED_RESPONSE = 0, PREFILTER_XSOBEL = 1,
+ BASIC_PRESET=0, FISH_EYE_PRESET=1, NARROW_PRESET=2 };
+
+ //! the default constructor
+ CV_WRAP StereoBM();
+ //! the full constructor taking the camera-specific preset, number of disparities and the SAD window size
+ CV_WRAP StereoBM(int preset, int ndisparities=0, int SADWindowSize=21);
+ //! the method that reinitializes the state. The previous content is destroyed
+ void init(int preset, int ndisparities=0, int SADWindowSize=21);
+ //! the stereo correspondence operator. Finds the disparity for the specified rectified stereo pair
+ CV_WRAP_AS(compute) void operator()( InputArray left, InputArray right,
+ OutputArray disparity, int disptype=CV_16S );
+
+ //! pointer to the underlying CvStereoBMState
+ Ptr<CvStereoBMState> state;
+};
+
+
+/*!
+ Semi-Global Block Matching Stereo Correspondence Algorithm
+
+ The class implements the original SGBM stereo correspondence algorithm by H. Hirschmuller and some its modification.
+ */
+class CV_EXPORTS_W StereoSGBM
+{
+public:
+ enum { DISP_SHIFT=4, DISP_SCALE = (1<<DISP_SHIFT) };
+
+ //! the default constructor
+ CV_WRAP StereoSGBM();
+
+ //! the full constructor taking all the necessary algorithm parameters
+ CV_WRAP StereoSGBM(int minDisparity, int numDisparities, int SADWindowSize,
+ int P1=0, int P2=0, int disp12MaxDiff=0,
+ int preFilterCap=0, int uniquenessRatio=0,
+ int speckleWindowSize=0, int speckleRange=0,
+ bool fullDP=false);
+ //! the destructor
+ virtual ~StereoSGBM();
+
+ //! the stereo correspondence operator that computes disparity map for the specified rectified stereo pair
+ CV_WRAP_AS(compute) virtual void operator()(InputArray left, InputArray right,
+ OutputArray disp);
+
+ CV_PROP_RW int minDisparity;
+ CV_PROP_RW int numberOfDisparities;
+ CV_PROP_RW int SADWindowSize;
+ CV_PROP_RW int preFilterCap;
+ CV_PROP_RW int uniquenessRatio;
+ CV_PROP_RW int P1;
+ CV_PROP_RW int P2;
+ CV_PROP_RW int speckleWindowSize;
+ CV_PROP_RW int speckleRange;
+ CV_PROP_RW int disp12MaxDiff;
+ CV_PROP_RW bool fullDP;
+
+protected:
+ Mat buffer;
+};
+
+//! filters off speckles (small regions of incorrectly computed disparity)
+CV_EXPORTS_W void filterSpeckles( InputOutputArray img, double newVal, int maxSpeckleSize, double maxDiff,
+ InputOutputArray buf=noArray() );
+
+//! computes valid disparity ROI from the valid ROIs of the rectified images (that are returned by cv::stereoRectify())
+CV_EXPORTS_W Rect getValidDisparityROI( Rect roi1, Rect roi2,
+ int minDisparity, int numberOfDisparities,
+ int SADWindowSize );
+
+//! validates disparity using the left-right check. The matrix "cost" should be computed by the stereo correspondence algorithm
+CV_EXPORTS_W void validateDisparity( InputOutputArray disparity, InputArray cost,
+ int minDisparity, int numberOfDisparities,
+ int disp12MaxDisp=1 );
+
+//! reprojects disparity image to 3D: (x,y,d)->(X,Y,Z) using the matrix Q returned by cv::stereoRectify
+CV_EXPORTS_W void reprojectImageTo3D( InputArray disparity,
+ OutputArray _3dImage, InputArray Q,
+ bool handleMissingValues=false,
+ int ddepth=-1 );
+
+CV_EXPORTS_W int estimateAffine3D(InputArray src, InputArray dst,
+ OutputArray out, OutputArray inliers,
+ double ransacThreshold=3, double confidence=0.99);
+
+namespace fisheye
+{
+ enum{
+ CALIB_USE_INTRINSIC_GUESS = 1,
+ CALIB_RECOMPUTE_EXTRINSIC = 2,
+ CALIB_CHECK_COND = 4,
+ CALIB_FIX_SKEW = 8,
+ CALIB_FIX_K1 = 16,
+ CALIB_FIX_K2 = 32,
+ CALIB_FIX_K3 = 64,
+ CALIB_FIX_K4 = 128,
+ CALIB_FIX_INTRINSIC = 256
+ };
+
+ //! projects 3D points using fisheye model
+ CV_EXPORTS void projectPoints(InputArray objectPoints, OutputArray imagePoints, const Affine3d& affine,
+ InputArray K, InputArray D, double alpha = 0, OutputArray jacobian = noArray());
+
+ //! projects points using fisheye model
+ CV_EXPORTS void projectPoints(InputArray objectPoints, OutputArray imagePoints, InputArray rvec, InputArray tvec,
+ InputArray K, InputArray D, double alpha = 0, OutputArray jacobian = noArray());
+
+ //! distorts 2D points using fisheye model
+ CV_EXPORTS void distortPoints(InputArray undistorted, OutputArray distorted, InputArray K, InputArray D, double alpha = 0);
+
+ //! undistorts 2D points using fisheye model
+ CV_EXPORTS void undistortPoints(InputArray distorted, OutputArray undistorted,
+ InputArray K, InputArray D, InputArray R = noArray(), InputArray P = noArray());
+
+ //! computing undistortion and rectification maps for image transform by cv::remap()
+ //! If D is empty zero distortion is used, if R or P is empty identity matrixes are used
+ CV_EXPORTS void initUndistortRectifyMap(InputArray K, InputArray D, InputArray R, InputArray P,
+ const cv::Size& size, int m1type, OutputArray map1, OutputArray map2);
+
+ //! undistorts image, optionally changes resolution and camera matrix. If Knew zero identity matrix is used
+ CV_EXPORTS void undistortImage(InputArray distorted, OutputArray undistorted,
+ InputArray K, InputArray D, InputArray Knew = cv::noArray(), const Size& new_size = Size());
+
+ //! estimates new camera matrix for undistortion or rectification
+ CV_EXPORTS void estimateNewCameraMatrixForUndistortRectify(InputArray K, InputArray D, const Size &image_size, InputArray R,
+ OutputArray P, double balance = 0.0, const Size& new_size = Size(), double fov_scale = 1.0);
+
+ //! performs camera calibaration
+ CV_EXPORTS double calibrate(InputArrayOfArrays objectPoints, InputArrayOfArrays imagePoints, const Size& image_size,
+ InputOutputArray K, InputOutputArray D, OutputArrayOfArrays rvecs, OutputArrayOfArrays tvecs, int flags = 0,
+ TermCriteria criteria = TermCriteria(TermCriteria::COUNT + TermCriteria::EPS, 100, DBL_EPSILON));
+
+ //! stereo rectification estimation
+ CV_EXPORTS void stereoRectify(InputArray K1, InputArray D1, InputArray K2, InputArray D2, const Size &imageSize, InputArray R, InputArray tvec,
+ OutputArray R1, OutputArray R2, OutputArray P1, OutputArray P2, OutputArray Q, int flags, const Size &newImageSize = Size(),
+ double balance = 0.0, double fov_scale = 1.0);
+
+ //! performs stereo calibaration
+ CV_EXPORTS double stereoCalibrate(InputArrayOfArrays objectPoints, InputArrayOfArrays imagePoints1, InputArrayOfArrays imagePoints2,
+ InputOutputArray K1, InputOutputArray D1, InputOutputArray K2, InputOutputArray D2, Size imageSize,
+ OutputArray R, OutputArray T, int flags = CALIB_FIX_INTRINSIC,
+ TermCriteria criteria = TermCriteria(TermCriteria::COUNT + TermCriteria::EPS, 100, DBL_EPSILON));
+
+}
+
+}
+
+#endif
+#endif