summaryrefslogtreecommitdiff
path: root/2.3-1/src/fortran/lapack/zunmbr.f
diff options
context:
space:
mode:
Diffstat (limited to '2.3-1/src/fortran/lapack/zunmbr.f')
-rw-r--r--2.3-1/src/fortran/lapack/zunmbr.f288
1 files changed, 288 insertions, 0 deletions
diff --git a/2.3-1/src/fortran/lapack/zunmbr.f b/2.3-1/src/fortran/lapack/zunmbr.f
new file mode 100644
index 00000000..b32ce338
--- /dev/null
+++ b/2.3-1/src/fortran/lapack/zunmbr.f
@@ -0,0 +1,288 @@
+ SUBROUTINE ZUNMBR( VECT, SIDE, TRANS, M, N, K, A, LDA, TAU, C,
+ $ LDC, WORK, LWORK, INFO )
+*
+* -- LAPACK routine (version 3.1) --
+* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd..
+* November 2006
+*
+* .. Scalar Arguments ..
+ CHARACTER SIDE, TRANS, VECT
+ INTEGER INFO, K, LDA, LDC, LWORK, M, N
+* ..
+* .. Array Arguments ..
+ COMPLEX*16 A( LDA, * ), C( LDC, * ), TAU( * ), WORK( * )
+* ..
+*
+* Purpose
+* =======
+*
+* If VECT = 'Q', ZUNMBR overwrites the general complex M-by-N matrix C
+* with
+* SIDE = 'L' SIDE = 'R'
+* TRANS = 'N': Q * C C * Q
+* TRANS = 'C': Q**H * C C * Q**H
+*
+* If VECT = 'P', ZUNMBR overwrites the general complex M-by-N matrix C
+* with
+* SIDE = 'L' SIDE = 'R'
+* TRANS = 'N': P * C C * P
+* TRANS = 'C': P**H * C C * P**H
+*
+* Here Q and P**H are the unitary matrices determined by ZGEBRD when
+* reducing a complex matrix A to bidiagonal form: A = Q * B * P**H. Q
+* and P**H are defined as products of elementary reflectors H(i) and
+* G(i) respectively.
+*
+* Let nq = m if SIDE = 'L' and nq = n if SIDE = 'R'. Thus nq is the
+* order of the unitary matrix Q or P**H that is applied.
+*
+* If VECT = 'Q', A is assumed to have been an NQ-by-K matrix:
+* if nq >= k, Q = H(1) H(2) . . . H(k);
+* if nq < k, Q = H(1) H(2) . . . H(nq-1).
+*
+* If VECT = 'P', A is assumed to have been a K-by-NQ matrix:
+* if k < nq, P = G(1) G(2) . . . G(k);
+* if k >= nq, P = G(1) G(2) . . . G(nq-1).
+*
+* Arguments
+* =========
+*
+* VECT (input) CHARACTER*1
+* = 'Q': apply Q or Q**H;
+* = 'P': apply P or P**H.
+*
+* SIDE (input) CHARACTER*1
+* = 'L': apply Q, Q**H, P or P**H from the Left;
+* = 'R': apply Q, Q**H, P or P**H from the Right.
+*
+* TRANS (input) CHARACTER*1
+* = 'N': No transpose, apply Q or P;
+* = 'C': Conjugate transpose, apply Q**H or P**H.
+*
+* M (input) INTEGER
+* The number of rows of the matrix C. M >= 0.
+*
+* N (input) INTEGER
+* The number of columns of the matrix C. N >= 0.
+*
+* K (input) INTEGER
+* If VECT = 'Q', the number of columns in the original
+* matrix reduced by ZGEBRD.
+* If VECT = 'P', the number of rows in the original
+* matrix reduced by ZGEBRD.
+* K >= 0.
+*
+* A (input) COMPLEX*16 array, dimension
+* (LDA,min(nq,K)) if VECT = 'Q'
+* (LDA,nq) if VECT = 'P'
+* The vectors which define the elementary reflectors H(i) and
+* G(i), whose products determine the matrices Q and P, as
+* returned by ZGEBRD.
+*
+* LDA (input) INTEGER
+* The leading dimension of the array A.
+* If VECT = 'Q', LDA >= max(1,nq);
+* if VECT = 'P', LDA >= max(1,min(nq,K)).
+*
+* TAU (input) COMPLEX*16 array, dimension (min(nq,K))
+* TAU(i) must contain the scalar factor of the elementary
+* reflector H(i) or G(i) which determines Q or P, as returned
+* by ZGEBRD in the array argument TAUQ or TAUP.
+*
+* C (input/output) COMPLEX*16 array, dimension (LDC,N)
+* On entry, the M-by-N matrix C.
+* On exit, C is overwritten by Q*C or Q**H*C or C*Q**H or C*Q
+* or P*C or P**H*C or C*P or C*P**H.
+*
+* LDC (input) INTEGER
+* The leading dimension of the array C. LDC >= max(1,M).
+*
+* WORK (workspace/output) COMPLEX*16 array, dimension (MAX(1,LWORK))
+* On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
+*
+* LWORK (input) INTEGER
+* The dimension of the array WORK.
+* If SIDE = 'L', LWORK >= max(1,N);
+* if SIDE = 'R', LWORK >= max(1,M);
+* if N = 0 or M = 0, LWORK >= 1.
+* For optimum performance LWORK >= max(1,N*NB) if SIDE = 'L',
+* and LWORK >= max(1,M*NB) if SIDE = 'R', where NB is the
+* optimal blocksize. (NB = 0 if M = 0 or N = 0.)
+*
+* If LWORK = -1, then a workspace query is assumed; the routine
+* only calculates the optimal size of the WORK array, returns
+* this value as the first entry of the WORK array, and no error
+* message related to LWORK is issued by XERBLA.
+*
+* INFO (output) INTEGER
+* = 0: successful exit
+* < 0: if INFO = -i, the i-th argument had an illegal value
+*
+* =====================================================================
+*
+* .. Local Scalars ..
+ LOGICAL APPLYQ, LEFT, LQUERY, NOTRAN
+ CHARACTER TRANST
+ INTEGER I1, I2, IINFO, LWKOPT, MI, NB, NI, NQ, NW
+* ..
+* .. External Functions ..
+ LOGICAL LSAME
+ INTEGER ILAENV
+ EXTERNAL LSAME, ILAENV
+* ..
+* .. External Subroutines ..
+ EXTERNAL XERBLA, ZUNMLQ, ZUNMQR
+* ..
+* .. Intrinsic Functions ..
+ INTRINSIC MAX, MIN
+* ..
+* .. Executable Statements ..
+*
+* Test the input arguments
+*
+ INFO = 0
+ APPLYQ = LSAME( VECT, 'Q' )
+ LEFT = LSAME( SIDE, 'L' )
+ NOTRAN = LSAME( TRANS, 'N' )
+ LQUERY = ( LWORK.EQ.-1 )
+*
+* NQ is the order of Q or P and NW is the minimum dimension of WORK
+*
+ IF( LEFT ) THEN
+ NQ = M
+ NW = N
+ ELSE
+ NQ = N
+ NW = M
+ END IF
+ IF( M.EQ.0 .OR. N.EQ.0 ) THEN
+ NW = 0
+ END IF
+ IF( .NOT.APPLYQ .AND. .NOT.LSAME( VECT, 'P' ) ) THEN
+ INFO = -1
+ ELSE IF( .NOT.LEFT .AND. .NOT.LSAME( SIDE, 'R' ) ) THEN
+ INFO = -2
+ ELSE IF( .NOT.NOTRAN .AND. .NOT.LSAME( TRANS, 'C' ) ) THEN
+ INFO = -3
+ ELSE IF( M.LT.0 ) THEN
+ INFO = -4
+ ELSE IF( N.LT.0 ) THEN
+ INFO = -5
+ ELSE IF( K.LT.0 ) THEN
+ INFO = -6
+ ELSE IF( ( APPLYQ .AND. LDA.LT.MAX( 1, NQ ) ) .OR.
+ $ ( .NOT.APPLYQ .AND. LDA.LT.MAX( 1, MIN( NQ, K ) ) ) )
+ $ THEN
+ INFO = -8
+ ELSE IF( LDC.LT.MAX( 1, M ) ) THEN
+ INFO = -11
+ ELSE IF( LWORK.LT.MAX( 1, NW ) .AND. .NOT.LQUERY ) THEN
+ INFO = -13
+ END IF
+*
+ IF( INFO.EQ.0 ) THEN
+ IF( NW.GT.0 ) THEN
+ IF( APPLYQ ) THEN
+ IF( LEFT ) THEN
+ NB = ILAENV( 1, 'ZUNMQR', SIDE // TRANS, M-1, N, M-1,
+ $ -1 )
+ ELSE
+ NB = ILAENV( 1, 'ZUNMQR', SIDE // TRANS, M, N-1, N-1,
+ $ -1 )
+ END IF
+ ELSE
+ IF( LEFT ) THEN
+ NB = ILAENV( 1, 'ZUNMLQ', SIDE // TRANS, M-1, N, M-1,
+ $ -1 )
+ ELSE
+ NB = ILAENV( 1, 'ZUNMLQ', SIDE // TRANS, M, N-1, N-1,
+ $ -1 )
+ END IF
+ END IF
+ LWKOPT = MAX( 1, NW*NB )
+ ELSE
+ LWKOPT = 1
+ END IF
+ WORK( 1 ) = LWKOPT
+ END IF
+*
+ IF( INFO.NE.0 ) THEN
+ CALL XERBLA( 'ZUNMBR', -INFO )
+ RETURN
+ ELSE IF( LQUERY ) THEN
+ RETURN
+ END IF
+*
+* Quick return if possible
+*
+ IF( M.EQ.0 .OR. N.EQ.0 )
+ $ RETURN
+*
+ IF( APPLYQ ) THEN
+*
+* Apply Q
+*
+ IF( NQ.GE.K ) THEN
+*
+* Q was determined by a call to ZGEBRD with nq >= k
+*
+ CALL ZUNMQR( SIDE, TRANS, M, N, K, A, LDA, TAU, C, LDC,
+ $ WORK, LWORK, IINFO )
+ ELSE IF( NQ.GT.1 ) THEN
+*
+* Q was determined by a call to ZGEBRD with nq < k
+*
+ IF( LEFT ) THEN
+ MI = M - 1
+ NI = N
+ I1 = 2
+ I2 = 1
+ ELSE
+ MI = M
+ NI = N - 1
+ I1 = 1
+ I2 = 2
+ END IF
+ CALL ZUNMQR( SIDE, TRANS, MI, NI, NQ-1, A( 2, 1 ), LDA, TAU,
+ $ C( I1, I2 ), LDC, WORK, LWORK, IINFO )
+ END IF
+ ELSE
+*
+* Apply P
+*
+ IF( NOTRAN ) THEN
+ TRANST = 'C'
+ ELSE
+ TRANST = 'N'
+ END IF
+ IF( NQ.GT.K ) THEN
+*
+* P was determined by a call to ZGEBRD with nq > k
+*
+ CALL ZUNMLQ( SIDE, TRANST, M, N, K, A, LDA, TAU, C, LDC,
+ $ WORK, LWORK, IINFO )
+ ELSE IF( NQ.GT.1 ) THEN
+*
+* P was determined by a call to ZGEBRD with nq <= k
+*
+ IF( LEFT ) THEN
+ MI = M - 1
+ NI = N
+ I1 = 2
+ I2 = 1
+ ELSE
+ MI = M
+ NI = N - 1
+ I1 = 1
+ I2 = 2
+ END IF
+ CALL ZUNMLQ( SIDE, TRANST, MI, NI, NQ-1, A( 1, 2 ), LDA,
+ $ TAU, C( I1, I2 ), LDC, WORK, LWORK, IINFO )
+ END IF
+ END IF
+ WORK( 1 ) = LWKOPT
+ RETURN
+*
+* End of ZUNMBR
+*
+ END