diff options
Diffstat (limited to '2.3-1/src/fortran/lapack/ztgex2.f')
-rw-r--r-- | 2.3-1/src/fortran/lapack/ztgex2.f | 265 |
1 files changed, 265 insertions, 0 deletions
diff --git a/2.3-1/src/fortran/lapack/ztgex2.f b/2.3-1/src/fortran/lapack/ztgex2.f new file mode 100644 index 00000000..a0c42aad --- /dev/null +++ b/2.3-1/src/fortran/lapack/ztgex2.f @@ -0,0 +1,265 @@ + SUBROUTINE ZTGEX2( WANTQ, WANTZ, N, A, LDA, B, LDB, Q, LDQ, Z, + $ LDZ, J1, INFO ) +* +* -- LAPACK auxiliary routine (version 3.1) -- +* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. +* November 2006 +* +* .. Scalar Arguments .. + LOGICAL WANTQ, WANTZ + INTEGER INFO, J1, LDA, LDB, LDQ, LDZ, N +* .. +* .. Array Arguments .. + COMPLEX*16 A( LDA, * ), B( LDB, * ), Q( LDQ, * ), + $ Z( LDZ, * ) +* .. +* +* Purpose +* ======= +* +* ZTGEX2 swaps adjacent diagonal 1 by 1 blocks (A11,B11) and (A22,B22) +* in an upper triangular matrix pair (A, B) by an unitary equivalence +* transformation. +* +* (A, B) must be in generalized Schur canonical form, that is, A and +* B are both upper triangular. +* +* Optionally, the matrices Q and Z of generalized Schur vectors are +* updated. +* +* Q(in) * A(in) * Z(in)' = Q(out) * A(out) * Z(out)' +* Q(in) * B(in) * Z(in)' = Q(out) * B(out) * Z(out)' +* +* +* Arguments +* ========= +* +* WANTQ (input) LOGICAL +* .TRUE. : update the left transformation matrix Q; +* .FALSE.: do not update Q. +* +* WANTZ (input) LOGICAL +* .TRUE. : update the right transformation matrix Z; +* .FALSE.: do not update Z. +* +* N (input) INTEGER +* The order of the matrices A and B. N >= 0. +* +* A (input/output) COMPLEX*16 arrays, dimensions (LDA,N) +* On entry, the matrix A in the pair (A, B). +* On exit, the updated matrix A. +* +* LDA (input) INTEGER +* The leading dimension of the array A. LDA >= max(1,N). +* +* B (input/output) COMPLEX*16 arrays, dimensions (LDB,N) +* On entry, the matrix B in the pair (A, B). +* On exit, the updated matrix B. +* +* LDB (input) INTEGER +* The leading dimension of the array B. LDB >= max(1,N). +* +* Q (input/output) COMPLEX*16 array, dimension (LDZ,N) +* If WANTQ = .TRUE, on entry, the unitary matrix Q. On exit, +* the updated matrix Q. +* Not referenced if WANTQ = .FALSE.. +* +* LDQ (input) INTEGER +* The leading dimension of the array Q. LDQ >= 1; +* If WANTQ = .TRUE., LDQ >= N. +* +* Z (input/output) COMPLEX*16 array, dimension (LDZ,N) +* If WANTZ = .TRUE, on entry, the unitary matrix Z. On exit, +* the updated matrix Z. +* Not referenced if WANTZ = .FALSE.. +* +* LDZ (input) INTEGER +* The leading dimension of the array Z. LDZ >= 1; +* If WANTZ = .TRUE., LDZ >= N. +* +* J1 (input) INTEGER +* The index to the first block (A11, B11). +* +* INFO (output) INTEGER +* =0: Successful exit. +* =1: The transformed matrix pair (A, B) would be too far +* from generalized Schur form; the problem is ill- +* conditioned. +* +* +* Further Details +* =============== +* +* Based on contributions by +* Bo Kagstrom and Peter Poromaa, Department of Computing Science, +* Umea University, S-901 87 Umea, Sweden. +* +* In the current code both weak and strong stability tests are +* performed. The user can omit the strong stability test by changing +* the internal logical parameter WANDS to .FALSE.. See ref. [2] for +* details. +* +* [1] B. Kagstrom; A Direct Method for Reordering Eigenvalues in the +* Generalized Real Schur Form of a Regular Matrix Pair (A, B), in +* M.S. Moonen et al (eds), Linear Algebra for Large Scale and +* Real-Time Applications, Kluwer Academic Publ. 1993, pp 195-218. +* +* [2] B. Kagstrom and P. Poromaa; Computing Eigenspaces with Specified +* Eigenvalues of a Regular Matrix Pair (A, B) and Condition +* Estimation: Theory, Algorithms and Software, Report UMINF-94.04, +* Department of Computing Science, Umea University, S-901 87 Umea, +* Sweden, 1994. Also as LAPACK Working Note 87. To appear in +* Numerical Algorithms, 1996. +* +* ===================================================================== +* +* .. Parameters .. + COMPLEX*16 CZERO, CONE + PARAMETER ( CZERO = ( 0.0D+0, 0.0D+0 ), + $ CONE = ( 1.0D+0, 0.0D+0 ) ) + DOUBLE PRECISION TEN + PARAMETER ( TEN = 10.0D+0 ) + INTEGER LDST + PARAMETER ( LDST = 2 ) + LOGICAL WANDS + PARAMETER ( WANDS = .TRUE. ) +* .. +* .. Local Scalars .. + LOGICAL DTRONG, WEAK + INTEGER I, M + DOUBLE PRECISION CQ, CZ, EPS, SA, SB, SCALE, SMLNUM, SS, SUM, + $ THRESH, WS + COMPLEX*16 CDUM, F, G, SQ, SZ +* .. +* .. Local Arrays .. + COMPLEX*16 S( LDST, LDST ), T( LDST, LDST ), WORK( 8 ) +* .. +* .. External Functions .. + DOUBLE PRECISION DLAMCH + EXTERNAL DLAMCH +* .. +* .. External Subroutines .. + EXTERNAL ZLACPY, ZLARTG, ZLASSQ, ZROT +* .. +* .. Intrinsic Functions .. + INTRINSIC ABS, DBLE, DCONJG, MAX, SQRT +* .. +* .. Executable Statements .. +* + INFO = 0 +* +* Quick return if possible +* + IF( N.LE.1 ) + $ RETURN +* + M = LDST + WEAK = .FALSE. + DTRONG = .FALSE. +* +* Make a local copy of selected block in (A, B) +* + CALL ZLACPY( 'Full', M, M, A( J1, J1 ), LDA, S, LDST ) + CALL ZLACPY( 'Full', M, M, B( J1, J1 ), LDB, T, LDST ) +* +* Compute the threshold for testing the acceptance of swapping. +* + EPS = DLAMCH( 'P' ) + SMLNUM = DLAMCH( 'S' ) / EPS + SCALE = DBLE( CZERO ) + SUM = DBLE( CONE ) + CALL ZLACPY( 'Full', M, M, S, LDST, WORK, M ) + CALL ZLACPY( 'Full', M, M, T, LDST, WORK( M*M+1 ), M ) + CALL ZLASSQ( 2*M*M, WORK, 1, SCALE, SUM ) + SA = SCALE*SQRT( SUM ) + THRESH = MAX( TEN*EPS*SA, SMLNUM ) +* +* Compute unitary QL and RQ that swap 1-by-1 and 1-by-1 blocks +* using Givens rotations and perform the swap tentatively. +* + F = S( 2, 2 )*T( 1, 1 ) - T( 2, 2 )*S( 1, 1 ) + G = S( 2, 2 )*T( 1, 2 ) - T( 2, 2 )*S( 1, 2 ) + SA = ABS( S( 2, 2 ) ) + SB = ABS( T( 2, 2 ) ) + CALL ZLARTG( G, F, CZ, SZ, CDUM ) + SZ = -SZ + CALL ZROT( 2, S( 1, 1 ), 1, S( 1, 2 ), 1, CZ, DCONJG( SZ ) ) + CALL ZROT( 2, T( 1, 1 ), 1, T( 1, 2 ), 1, CZ, DCONJG( SZ ) ) + IF( SA.GE.SB ) THEN + CALL ZLARTG( S( 1, 1 ), S( 2, 1 ), CQ, SQ, CDUM ) + ELSE + CALL ZLARTG( T( 1, 1 ), T( 2, 1 ), CQ, SQ, CDUM ) + END IF + CALL ZROT( 2, S( 1, 1 ), LDST, S( 2, 1 ), LDST, CQ, SQ ) + CALL ZROT( 2, T( 1, 1 ), LDST, T( 2, 1 ), LDST, CQ, SQ ) +* +* Weak stability test: |S21| + |T21| <= O(EPS F-norm((S, T))) +* + WS = ABS( S( 2, 1 ) ) + ABS( T( 2, 1 ) ) + WEAK = WS.LE.THRESH + IF( .NOT.WEAK ) + $ GO TO 20 +* + IF( WANDS ) THEN +* +* Strong stability test: +* F-norm((A-QL'*S*QR, B-QL'*T*QR)) <= O(EPS*F-norm((A, B))) +* + CALL ZLACPY( 'Full', M, M, S, LDST, WORK, M ) + CALL ZLACPY( 'Full', M, M, T, LDST, WORK( M*M+1 ), M ) + CALL ZROT( 2, WORK, 1, WORK( 3 ), 1, CZ, -DCONJG( SZ ) ) + CALL ZROT( 2, WORK( 5 ), 1, WORK( 7 ), 1, CZ, -DCONJG( SZ ) ) + CALL ZROT( 2, WORK, 2, WORK( 2 ), 2, CQ, -SQ ) + CALL ZROT( 2, WORK( 5 ), 2, WORK( 6 ), 2, CQ, -SQ ) + DO 10 I = 1, 2 + WORK( I ) = WORK( I ) - A( J1+I-1, J1 ) + WORK( I+2 ) = WORK( I+2 ) - A( J1+I-1, J1+1 ) + WORK( I+4 ) = WORK( I+4 ) - B( J1+I-1, J1 ) + WORK( I+6 ) = WORK( I+6 ) - B( J1+I-1, J1+1 ) + 10 CONTINUE + SCALE = DBLE( CZERO ) + SUM = DBLE( CONE ) + CALL ZLASSQ( 2*M*M, WORK, 1, SCALE, SUM ) + SS = SCALE*SQRT( SUM ) + DTRONG = SS.LE.THRESH + IF( .NOT.DTRONG ) + $ GO TO 20 + END IF +* +* If the swap is accepted ("weakly" and "strongly"), apply the +* equivalence transformations to the original matrix pair (A,B) +* + CALL ZROT( J1+1, A( 1, J1 ), 1, A( 1, J1+1 ), 1, CZ, + $ DCONJG( SZ ) ) + CALL ZROT( J1+1, B( 1, J1 ), 1, B( 1, J1+1 ), 1, CZ, + $ DCONJG( SZ ) ) + CALL ZROT( N-J1+1, A( J1, J1 ), LDA, A( J1+1, J1 ), LDA, CQ, SQ ) + CALL ZROT( N-J1+1, B( J1, J1 ), LDB, B( J1+1, J1 ), LDB, CQ, SQ ) +* +* Set N1 by N2 (2,1) blocks to 0 +* + A( J1+1, J1 ) = CZERO + B( J1+1, J1 ) = CZERO +* +* Accumulate transformations into Q and Z if requested. +* + IF( WANTZ ) + $ CALL ZROT( N, Z( 1, J1 ), 1, Z( 1, J1+1 ), 1, CZ, + $ DCONJG( SZ ) ) + IF( WANTQ ) + $ CALL ZROT( N, Q( 1, J1 ), 1, Q( 1, J1+1 ), 1, CQ, + $ DCONJG( SQ ) ) +* +* Exit with INFO = 0 if swap was successfully performed. +* + RETURN +* +* Exit with INFO = 1 if swap was rejected. +* + 20 CONTINUE + INFO = 1 + RETURN +* +* End of ZTGEX2 +* + END |