summaryrefslogtreecommitdiff
path: root/2.3-1/src/fortran/lapack/ztgex2.f
diff options
context:
space:
mode:
Diffstat (limited to '2.3-1/src/fortran/lapack/ztgex2.f')
-rw-r--r--2.3-1/src/fortran/lapack/ztgex2.f265
1 files changed, 265 insertions, 0 deletions
diff --git a/2.3-1/src/fortran/lapack/ztgex2.f b/2.3-1/src/fortran/lapack/ztgex2.f
new file mode 100644
index 00000000..a0c42aad
--- /dev/null
+++ b/2.3-1/src/fortran/lapack/ztgex2.f
@@ -0,0 +1,265 @@
+ SUBROUTINE ZTGEX2( WANTQ, WANTZ, N, A, LDA, B, LDB, Q, LDQ, Z,
+ $ LDZ, J1, INFO )
+*
+* -- LAPACK auxiliary routine (version 3.1) --
+* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd..
+* November 2006
+*
+* .. Scalar Arguments ..
+ LOGICAL WANTQ, WANTZ
+ INTEGER INFO, J1, LDA, LDB, LDQ, LDZ, N
+* ..
+* .. Array Arguments ..
+ COMPLEX*16 A( LDA, * ), B( LDB, * ), Q( LDQ, * ),
+ $ Z( LDZ, * )
+* ..
+*
+* Purpose
+* =======
+*
+* ZTGEX2 swaps adjacent diagonal 1 by 1 blocks (A11,B11) and (A22,B22)
+* in an upper triangular matrix pair (A, B) by an unitary equivalence
+* transformation.
+*
+* (A, B) must be in generalized Schur canonical form, that is, A and
+* B are both upper triangular.
+*
+* Optionally, the matrices Q and Z of generalized Schur vectors are
+* updated.
+*
+* Q(in) * A(in) * Z(in)' = Q(out) * A(out) * Z(out)'
+* Q(in) * B(in) * Z(in)' = Q(out) * B(out) * Z(out)'
+*
+*
+* Arguments
+* =========
+*
+* WANTQ (input) LOGICAL
+* .TRUE. : update the left transformation matrix Q;
+* .FALSE.: do not update Q.
+*
+* WANTZ (input) LOGICAL
+* .TRUE. : update the right transformation matrix Z;
+* .FALSE.: do not update Z.
+*
+* N (input) INTEGER
+* The order of the matrices A and B. N >= 0.
+*
+* A (input/output) COMPLEX*16 arrays, dimensions (LDA,N)
+* On entry, the matrix A in the pair (A, B).
+* On exit, the updated matrix A.
+*
+* LDA (input) INTEGER
+* The leading dimension of the array A. LDA >= max(1,N).
+*
+* B (input/output) COMPLEX*16 arrays, dimensions (LDB,N)
+* On entry, the matrix B in the pair (A, B).
+* On exit, the updated matrix B.
+*
+* LDB (input) INTEGER
+* The leading dimension of the array B. LDB >= max(1,N).
+*
+* Q (input/output) COMPLEX*16 array, dimension (LDZ,N)
+* If WANTQ = .TRUE, on entry, the unitary matrix Q. On exit,
+* the updated matrix Q.
+* Not referenced if WANTQ = .FALSE..
+*
+* LDQ (input) INTEGER
+* The leading dimension of the array Q. LDQ >= 1;
+* If WANTQ = .TRUE., LDQ >= N.
+*
+* Z (input/output) COMPLEX*16 array, dimension (LDZ,N)
+* If WANTZ = .TRUE, on entry, the unitary matrix Z. On exit,
+* the updated matrix Z.
+* Not referenced if WANTZ = .FALSE..
+*
+* LDZ (input) INTEGER
+* The leading dimension of the array Z. LDZ >= 1;
+* If WANTZ = .TRUE., LDZ >= N.
+*
+* J1 (input) INTEGER
+* The index to the first block (A11, B11).
+*
+* INFO (output) INTEGER
+* =0: Successful exit.
+* =1: The transformed matrix pair (A, B) would be too far
+* from generalized Schur form; the problem is ill-
+* conditioned.
+*
+*
+* Further Details
+* ===============
+*
+* Based on contributions by
+* Bo Kagstrom and Peter Poromaa, Department of Computing Science,
+* Umea University, S-901 87 Umea, Sweden.
+*
+* In the current code both weak and strong stability tests are
+* performed. The user can omit the strong stability test by changing
+* the internal logical parameter WANDS to .FALSE.. See ref. [2] for
+* details.
+*
+* [1] B. Kagstrom; A Direct Method for Reordering Eigenvalues in the
+* Generalized Real Schur Form of a Regular Matrix Pair (A, B), in
+* M.S. Moonen et al (eds), Linear Algebra for Large Scale and
+* Real-Time Applications, Kluwer Academic Publ. 1993, pp 195-218.
+*
+* [2] B. Kagstrom and P. Poromaa; Computing Eigenspaces with Specified
+* Eigenvalues of a Regular Matrix Pair (A, B) and Condition
+* Estimation: Theory, Algorithms and Software, Report UMINF-94.04,
+* Department of Computing Science, Umea University, S-901 87 Umea,
+* Sweden, 1994. Also as LAPACK Working Note 87. To appear in
+* Numerical Algorithms, 1996.
+*
+* =====================================================================
+*
+* .. Parameters ..
+ COMPLEX*16 CZERO, CONE
+ PARAMETER ( CZERO = ( 0.0D+0, 0.0D+0 ),
+ $ CONE = ( 1.0D+0, 0.0D+0 ) )
+ DOUBLE PRECISION TEN
+ PARAMETER ( TEN = 10.0D+0 )
+ INTEGER LDST
+ PARAMETER ( LDST = 2 )
+ LOGICAL WANDS
+ PARAMETER ( WANDS = .TRUE. )
+* ..
+* .. Local Scalars ..
+ LOGICAL DTRONG, WEAK
+ INTEGER I, M
+ DOUBLE PRECISION CQ, CZ, EPS, SA, SB, SCALE, SMLNUM, SS, SUM,
+ $ THRESH, WS
+ COMPLEX*16 CDUM, F, G, SQ, SZ
+* ..
+* .. Local Arrays ..
+ COMPLEX*16 S( LDST, LDST ), T( LDST, LDST ), WORK( 8 )
+* ..
+* .. External Functions ..
+ DOUBLE PRECISION DLAMCH
+ EXTERNAL DLAMCH
+* ..
+* .. External Subroutines ..
+ EXTERNAL ZLACPY, ZLARTG, ZLASSQ, ZROT
+* ..
+* .. Intrinsic Functions ..
+ INTRINSIC ABS, DBLE, DCONJG, MAX, SQRT
+* ..
+* .. Executable Statements ..
+*
+ INFO = 0
+*
+* Quick return if possible
+*
+ IF( N.LE.1 )
+ $ RETURN
+*
+ M = LDST
+ WEAK = .FALSE.
+ DTRONG = .FALSE.
+*
+* Make a local copy of selected block in (A, B)
+*
+ CALL ZLACPY( 'Full', M, M, A( J1, J1 ), LDA, S, LDST )
+ CALL ZLACPY( 'Full', M, M, B( J1, J1 ), LDB, T, LDST )
+*
+* Compute the threshold for testing the acceptance of swapping.
+*
+ EPS = DLAMCH( 'P' )
+ SMLNUM = DLAMCH( 'S' ) / EPS
+ SCALE = DBLE( CZERO )
+ SUM = DBLE( CONE )
+ CALL ZLACPY( 'Full', M, M, S, LDST, WORK, M )
+ CALL ZLACPY( 'Full', M, M, T, LDST, WORK( M*M+1 ), M )
+ CALL ZLASSQ( 2*M*M, WORK, 1, SCALE, SUM )
+ SA = SCALE*SQRT( SUM )
+ THRESH = MAX( TEN*EPS*SA, SMLNUM )
+*
+* Compute unitary QL and RQ that swap 1-by-1 and 1-by-1 blocks
+* using Givens rotations and perform the swap tentatively.
+*
+ F = S( 2, 2 )*T( 1, 1 ) - T( 2, 2 )*S( 1, 1 )
+ G = S( 2, 2 )*T( 1, 2 ) - T( 2, 2 )*S( 1, 2 )
+ SA = ABS( S( 2, 2 ) )
+ SB = ABS( T( 2, 2 ) )
+ CALL ZLARTG( G, F, CZ, SZ, CDUM )
+ SZ = -SZ
+ CALL ZROT( 2, S( 1, 1 ), 1, S( 1, 2 ), 1, CZ, DCONJG( SZ ) )
+ CALL ZROT( 2, T( 1, 1 ), 1, T( 1, 2 ), 1, CZ, DCONJG( SZ ) )
+ IF( SA.GE.SB ) THEN
+ CALL ZLARTG( S( 1, 1 ), S( 2, 1 ), CQ, SQ, CDUM )
+ ELSE
+ CALL ZLARTG( T( 1, 1 ), T( 2, 1 ), CQ, SQ, CDUM )
+ END IF
+ CALL ZROT( 2, S( 1, 1 ), LDST, S( 2, 1 ), LDST, CQ, SQ )
+ CALL ZROT( 2, T( 1, 1 ), LDST, T( 2, 1 ), LDST, CQ, SQ )
+*
+* Weak stability test: |S21| + |T21| <= O(EPS F-norm((S, T)))
+*
+ WS = ABS( S( 2, 1 ) ) + ABS( T( 2, 1 ) )
+ WEAK = WS.LE.THRESH
+ IF( .NOT.WEAK )
+ $ GO TO 20
+*
+ IF( WANDS ) THEN
+*
+* Strong stability test:
+* F-norm((A-QL'*S*QR, B-QL'*T*QR)) <= O(EPS*F-norm((A, B)))
+*
+ CALL ZLACPY( 'Full', M, M, S, LDST, WORK, M )
+ CALL ZLACPY( 'Full', M, M, T, LDST, WORK( M*M+1 ), M )
+ CALL ZROT( 2, WORK, 1, WORK( 3 ), 1, CZ, -DCONJG( SZ ) )
+ CALL ZROT( 2, WORK( 5 ), 1, WORK( 7 ), 1, CZ, -DCONJG( SZ ) )
+ CALL ZROT( 2, WORK, 2, WORK( 2 ), 2, CQ, -SQ )
+ CALL ZROT( 2, WORK( 5 ), 2, WORK( 6 ), 2, CQ, -SQ )
+ DO 10 I = 1, 2
+ WORK( I ) = WORK( I ) - A( J1+I-1, J1 )
+ WORK( I+2 ) = WORK( I+2 ) - A( J1+I-1, J1+1 )
+ WORK( I+4 ) = WORK( I+4 ) - B( J1+I-1, J1 )
+ WORK( I+6 ) = WORK( I+6 ) - B( J1+I-1, J1+1 )
+ 10 CONTINUE
+ SCALE = DBLE( CZERO )
+ SUM = DBLE( CONE )
+ CALL ZLASSQ( 2*M*M, WORK, 1, SCALE, SUM )
+ SS = SCALE*SQRT( SUM )
+ DTRONG = SS.LE.THRESH
+ IF( .NOT.DTRONG )
+ $ GO TO 20
+ END IF
+*
+* If the swap is accepted ("weakly" and "strongly"), apply the
+* equivalence transformations to the original matrix pair (A,B)
+*
+ CALL ZROT( J1+1, A( 1, J1 ), 1, A( 1, J1+1 ), 1, CZ,
+ $ DCONJG( SZ ) )
+ CALL ZROT( J1+1, B( 1, J1 ), 1, B( 1, J1+1 ), 1, CZ,
+ $ DCONJG( SZ ) )
+ CALL ZROT( N-J1+1, A( J1, J1 ), LDA, A( J1+1, J1 ), LDA, CQ, SQ )
+ CALL ZROT( N-J1+1, B( J1, J1 ), LDB, B( J1+1, J1 ), LDB, CQ, SQ )
+*
+* Set N1 by N2 (2,1) blocks to 0
+*
+ A( J1+1, J1 ) = CZERO
+ B( J1+1, J1 ) = CZERO
+*
+* Accumulate transformations into Q and Z if requested.
+*
+ IF( WANTZ )
+ $ CALL ZROT( N, Z( 1, J1 ), 1, Z( 1, J1+1 ), 1, CZ,
+ $ DCONJG( SZ ) )
+ IF( WANTQ )
+ $ CALL ZROT( N, Q( 1, J1 ), 1, Q( 1, J1+1 ), 1, CQ,
+ $ DCONJG( SQ ) )
+*
+* Exit with INFO = 0 if swap was successfully performed.
+*
+ RETURN
+*
+* Exit with INFO = 1 if swap was rejected.
+*
+ 20 CONTINUE
+ INFO = 1
+ RETURN
+*
+* End of ZTGEX2
+*
+ END