summaryrefslogtreecommitdiff
path: root/2.3-1/src/fortran/lapack/zlarzb.f
diff options
context:
space:
mode:
Diffstat (limited to '2.3-1/src/fortran/lapack/zlarzb.f')
-rw-r--r--2.3-1/src/fortran/lapack/zlarzb.f234
1 files changed, 234 insertions, 0 deletions
diff --git a/2.3-1/src/fortran/lapack/zlarzb.f b/2.3-1/src/fortran/lapack/zlarzb.f
new file mode 100644
index 00000000..05d2a0e3
--- /dev/null
+++ b/2.3-1/src/fortran/lapack/zlarzb.f
@@ -0,0 +1,234 @@
+ SUBROUTINE ZLARZB( SIDE, TRANS, DIRECT, STOREV, M, N, K, L, V,
+ $ LDV, T, LDT, C, LDC, WORK, LDWORK )
+*
+* -- LAPACK routine (version 3.1) --
+* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd..
+* November 2006
+*
+* .. Scalar Arguments ..
+ CHARACTER DIRECT, SIDE, STOREV, TRANS
+ INTEGER K, L, LDC, LDT, LDV, LDWORK, M, N
+* ..
+* .. Array Arguments ..
+ COMPLEX*16 C( LDC, * ), T( LDT, * ), V( LDV, * ),
+ $ WORK( LDWORK, * )
+* ..
+*
+* Purpose
+* =======
+*
+* ZLARZB applies a complex block reflector H or its transpose H**H
+* to a complex distributed M-by-N C from the left or the right.
+*
+* Currently, only STOREV = 'R' and DIRECT = 'B' are supported.
+*
+* Arguments
+* =========
+*
+* SIDE (input) CHARACTER*1
+* = 'L': apply H or H' from the Left
+* = 'R': apply H or H' from the Right
+*
+* TRANS (input) CHARACTER*1
+* = 'N': apply H (No transpose)
+* = 'C': apply H' (Conjugate transpose)
+*
+* DIRECT (input) CHARACTER*1
+* Indicates how H is formed from a product of elementary
+* reflectors
+* = 'F': H = H(1) H(2) . . . H(k) (Forward, not supported yet)
+* = 'B': H = H(k) . . . H(2) H(1) (Backward)
+*
+* STOREV (input) CHARACTER*1
+* Indicates how the vectors which define the elementary
+* reflectors are stored:
+* = 'C': Columnwise (not supported yet)
+* = 'R': Rowwise
+*
+* M (input) INTEGER
+* The number of rows of the matrix C.
+*
+* N (input) INTEGER
+* The number of columns of the matrix C.
+*
+* K (input) INTEGER
+* The order of the matrix T (= the number of elementary
+* reflectors whose product defines the block reflector).
+*
+* L (input) INTEGER
+* The number of columns of the matrix V containing the
+* meaningful part of the Householder reflectors.
+* If SIDE = 'L', M >= L >= 0, if SIDE = 'R', N >= L >= 0.
+*
+* V (input) COMPLEX*16 array, dimension (LDV,NV).
+* If STOREV = 'C', NV = K; if STOREV = 'R', NV = L.
+*
+* LDV (input) INTEGER
+* The leading dimension of the array V.
+* If STOREV = 'C', LDV >= L; if STOREV = 'R', LDV >= K.
+*
+* T (input) COMPLEX*16 array, dimension (LDT,K)
+* The triangular K-by-K matrix T in the representation of the
+* block reflector.
+*
+* LDT (input) INTEGER
+* The leading dimension of the array T. LDT >= K.
+*
+* C (input/output) COMPLEX*16 array, dimension (LDC,N)
+* On entry, the M-by-N matrix C.
+* On exit, C is overwritten by H*C or H'*C or C*H or C*H'.
+*
+* LDC (input) INTEGER
+* The leading dimension of the array C. LDC >= max(1,M).
+*
+* WORK (workspace) COMPLEX*16 array, dimension (LDWORK,K)
+*
+* LDWORK (input) INTEGER
+* The leading dimension of the array WORK.
+* If SIDE = 'L', LDWORK >= max(1,N);
+* if SIDE = 'R', LDWORK >= max(1,M).
+*
+* Further Details
+* ===============
+*
+* Based on contributions by
+* A. Petitet, Computer Science Dept., Univ. of Tenn., Knoxville, USA
+*
+* =====================================================================
+*
+* .. Parameters ..
+ COMPLEX*16 ONE
+ PARAMETER ( ONE = ( 1.0D+0, 0.0D+0 ) )
+* ..
+* .. Local Scalars ..
+ CHARACTER TRANST
+ INTEGER I, INFO, J
+* ..
+* .. External Functions ..
+ LOGICAL LSAME
+ EXTERNAL LSAME
+* ..
+* .. External Subroutines ..
+ EXTERNAL XERBLA, ZCOPY, ZGEMM, ZLACGV, ZTRMM
+* ..
+* .. Executable Statements ..
+*
+* Quick return if possible
+*
+ IF( M.LE.0 .OR. N.LE.0 )
+ $ RETURN
+*
+* Check for currently supported options
+*
+ INFO = 0
+ IF( .NOT.LSAME( DIRECT, 'B' ) ) THEN
+ INFO = -3
+ ELSE IF( .NOT.LSAME( STOREV, 'R' ) ) THEN
+ INFO = -4
+ END IF
+ IF( INFO.NE.0 ) THEN
+ CALL XERBLA( 'ZLARZB', -INFO )
+ RETURN
+ END IF
+*
+ IF( LSAME( TRANS, 'N' ) ) THEN
+ TRANST = 'C'
+ ELSE
+ TRANST = 'N'
+ END IF
+*
+ IF( LSAME( SIDE, 'L' ) ) THEN
+*
+* Form H * C or H' * C
+*
+* W( 1:n, 1:k ) = conjg( C( 1:k, 1:n )' )
+*
+ DO 10 J = 1, K
+ CALL ZCOPY( N, C( J, 1 ), LDC, WORK( 1, J ), 1 )
+ 10 CONTINUE
+*
+* W( 1:n, 1:k ) = W( 1:n, 1:k ) + ...
+* conjg( C( m-l+1:m, 1:n )' ) * V( 1:k, 1:l )'
+*
+ IF( L.GT.0 )
+ $ CALL ZGEMM( 'Transpose', 'Conjugate transpose', N, K, L,
+ $ ONE, C( M-L+1, 1 ), LDC, V, LDV, ONE, WORK,
+ $ LDWORK )
+*
+* W( 1:n, 1:k ) = W( 1:n, 1:k ) * T' or W( 1:m, 1:k ) * T
+*
+ CALL ZTRMM( 'Right', 'Lower', TRANST, 'Non-unit', N, K, ONE, T,
+ $ LDT, WORK, LDWORK )
+*
+* C( 1:k, 1:n ) = C( 1:k, 1:n ) - conjg( W( 1:n, 1:k )' )
+*
+ DO 30 J = 1, N
+ DO 20 I = 1, K
+ C( I, J ) = C( I, J ) - WORK( J, I )
+ 20 CONTINUE
+ 30 CONTINUE
+*
+* C( m-l+1:m, 1:n ) = C( m-l+1:m, 1:n ) - ...
+* conjg( V( 1:k, 1:l )' ) * conjg( W( 1:n, 1:k )' )
+*
+ IF( L.GT.0 )
+ $ CALL ZGEMM( 'Transpose', 'Transpose', L, N, K, -ONE, V, LDV,
+ $ WORK, LDWORK, ONE, C( M-L+1, 1 ), LDC )
+*
+ ELSE IF( LSAME( SIDE, 'R' ) ) THEN
+*
+* Form C * H or C * H'
+*
+* W( 1:m, 1:k ) = C( 1:m, 1:k )
+*
+ DO 40 J = 1, K
+ CALL ZCOPY( M, C( 1, J ), 1, WORK( 1, J ), 1 )
+ 40 CONTINUE
+*
+* W( 1:m, 1:k ) = W( 1:m, 1:k ) + ...
+* C( 1:m, n-l+1:n ) * conjg( V( 1:k, 1:l )' )
+*
+ IF( L.GT.0 )
+ $ CALL ZGEMM( 'No transpose', 'Transpose', M, K, L, ONE,
+ $ C( 1, N-L+1 ), LDC, V, LDV, ONE, WORK, LDWORK )
+*
+* W( 1:m, 1:k ) = W( 1:m, 1:k ) * conjg( T ) or
+* W( 1:m, 1:k ) * conjg( T' )
+*
+ DO 50 J = 1, K
+ CALL ZLACGV( K-J+1, T( J, J ), 1 )
+ 50 CONTINUE
+ CALL ZTRMM( 'Right', 'Lower', TRANS, 'Non-unit', M, K, ONE, T,
+ $ LDT, WORK, LDWORK )
+ DO 60 J = 1, K
+ CALL ZLACGV( K-J+1, T( J, J ), 1 )
+ 60 CONTINUE
+*
+* C( 1:m, 1:k ) = C( 1:m, 1:k ) - W( 1:m, 1:k )
+*
+ DO 80 J = 1, K
+ DO 70 I = 1, M
+ C( I, J ) = C( I, J ) - WORK( I, J )
+ 70 CONTINUE
+ 80 CONTINUE
+*
+* C( 1:m, n-l+1:n ) = C( 1:m, n-l+1:n ) - ...
+* W( 1:m, 1:k ) * conjg( V( 1:k, 1:l ) )
+*
+ DO 90 J = 1, L
+ CALL ZLACGV( K, V( 1, J ), 1 )
+ 90 CONTINUE
+ IF( L.GT.0 )
+ $ CALL ZGEMM( 'No transpose', 'No transpose', M, L, K, -ONE,
+ $ WORK, LDWORK, V, LDV, ONE, C( 1, N-L+1 ), LDC )
+ DO 100 J = 1, L
+ CALL ZLACGV( K, V( 1, J ), 1 )
+ 100 CONTINUE
+*
+ END IF
+*
+ RETURN
+*
+* End of ZLARZB
+*
+ END