summaryrefslogtreecommitdiff
path: root/2.3-1/src/fortran/lapack/zlarfb.f
diff options
context:
space:
mode:
Diffstat (limited to '2.3-1/src/fortran/lapack/zlarfb.f')
-rw-r--r--2.3-1/src/fortran/lapack/zlarfb.f608
1 files changed, 608 insertions, 0 deletions
diff --git a/2.3-1/src/fortran/lapack/zlarfb.f b/2.3-1/src/fortran/lapack/zlarfb.f
new file mode 100644
index 00000000..af93ea58
--- /dev/null
+++ b/2.3-1/src/fortran/lapack/zlarfb.f
@@ -0,0 +1,608 @@
+ SUBROUTINE ZLARFB( SIDE, TRANS, DIRECT, STOREV, M, N, K, V, LDV,
+ $ T, LDT, C, LDC, WORK, LDWORK )
+*
+* -- LAPACK auxiliary routine (version 3.1) --
+* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd..
+* November 2006
+*
+* .. Scalar Arguments ..
+ CHARACTER DIRECT, SIDE, STOREV, TRANS
+ INTEGER K, LDC, LDT, LDV, LDWORK, M, N
+* ..
+* .. Array Arguments ..
+ COMPLEX*16 C( LDC, * ), T( LDT, * ), V( LDV, * ),
+ $ WORK( LDWORK, * )
+* ..
+*
+* Purpose
+* =======
+*
+* ZLARFB applies a complex block reflector H or its transpose H' to a
+* complex M-by-N matrix C, from either the left or the right.
+*
+* Arguments
+* =========
+*
+* SIDE (input) CHARACTER*1
+* = 'L': apply H or H' from the Left
+* = 'R': apply H or H' from the Right
+*
+* TRANS (input) CHARACTER*1
+* = 'N': apply H (No transpose)
+* = 'C': apply H' (Conjugate transpose)
+*
+* DIRECT (input) CHARACTER*1
+* Indicates how H is formed from a product of elementary
+* reflectors
+* = 'F': H = H(1) H(2) . . . H(k) (Forward)
+* = 'B': H = H(k) . . . H(2) H(1) (Backward)
+*
+* STOREV (input) CHARACTER*1
+* Indicates how the vectors which define the elementary
+* reflectors are stored:
+* = 'C': Columnwise
+* = 'R': Rowwise
+*
+* M (input) INTEGER
+* The number of rows of the matrix C.
+*
+* N (input) INTEGER
+* The number of columns of the matrix C.
+*
+* K (input) INTEGER
+* The order of the matrix T (= the number of elementary
+* reflectors whose product defines the block reflector).
+*
+* V (input) COMPLEX*16 array, dimension
+* (LDV,K) if STOREV = 'C'
+* (LDV,M) if STOREV = 'R' and SIDE = 'L'
+* (LDV,N) if STOREV = 'R' and SIDE = 'R'
+* The matrix V. See further details.
+*
+* LDV (input) INTEGER
+* The leading dimension of the array V.
+* If STOREV = 'C' and SIDE = 'L', LDV >= max(1,M);
+* if STOREV = 'C' and SIDE = 'R', LDV >= max(1,N);
+* if STOREV = 'R', LDV >= K.
+*
+* T (input) COMPLEX*16 array, dimension (LDT,K)
+* The triangular K-by-K matrix T in the representation of the
+* block reflector.
+*
+* LDT (input) INTEGER
+* The leading dimension of the array T. LDT >= K.
+*
+* C (input/output) COMPLEX*16 array, dimension (LDC,N)
+* On entry, the M-by-N matrix C.
+* On exit, C is overwritten by H*C or H'*C or C*H or C*H'.
+*
+* LDC (input) INTEGER
+* The leading dimension of the array C. LDC >= max(1,M).
+*
+* WORK (workspace) COMPLEX*16 array, dimension (LDWORK,K)
+*
+* LDWORK (input) INTEGER
+* The leading dimension of the array WORK.
+* If SIDE = 'L', LDWORK >= max(1,N);
+* if SIDE = 'R', LDWORK >= max(1,M).
+*
+* =====================================================================
+*
+* .. Parameters ..
+ COMPLEX*16 ONE
+ PARAMETER ( ONE = ( 1.0D+0, 0.0D+0 ) )
+* ..
+* .. Local Scalars ..
+ CHARACTER TRANST
+ INTEGER I, J
+* ..
+* .. External Functions ..
+ LOGICAL LSAME
+ EXTERNAL LSAME
+* ..
+* .. External Subroutines ..
+ EXTERNAL ZCOPY, ZGEMM, ZLACGV, ZTRMM
+* ..
+* .. Intrinsic Functions ..
+ INTRINSIC DCONJG
+* ..
+* .. Executable Statements ..
+*
+* Quick return if possible
+*
+ IF( M.LE.0 .OR. N.LE.0 )
+ $ RETURN
+*
+ IF( LSAME( TRANS, 'N' ) ) THEN
+ TRANST = 'C'
+ ELSE
+ TRANST = 'N'
+ END IF
+*
+ IF( LSAME( STOREV, 'C' ) ) THEN
+*
+ IF( LSAME( DIRECT, 'F' ) ) THEN
+*
+* Let V = ( V1 ) (first K rows)
+* ( V2 )
+* where V1 is unit lower triangular.
+*
+ IF( LSAME( SIDE, 'L' ) ) THEN
+*
+* Form H * C or H' * C where C = ( C1 )
+* ( C2 )
+*
+* W := C' * V = (C1'*V1 + C2'*V2) (stored in WORK)
+*
+* W := C1'
+*
+ DO 10 J = 1, K
+ CALL ZCOPY( N, C( J, 1 ), LDC, WORK( 1, J ), 1 )
+ CALL ZLACGV( N, WORK( 1, J ), 1 )
+ 10 CONTINUE
+*
+* W := W * V1
+*
+ CALL ZTRMM( 'Right', 'Lower', 'No transpose', 'Unit', N,
+ $ K, ONE, V, LDV, WORK, LDWORK )
+ IF( M.GT.K ) THEN
+*
+* W := W + C2'*V2
+*
+ CALL ZGEMM( 'Conjugate transpose', 'No transpose', N,
+ $ K, M-K, ONE, C( K+1, 1 ), LDC,
+ $ V( K+1, 1 ), LDV, ONE, WORK, LDWORK )
+ END IF
+*
+* W := W * T' or W * T
+*
+ CALL ZTRMM( 'Right', 'Upper', TRANST, 'Non-unit', N, K,
+ $ ONE, T, LDT, WORK, LDWORK )
+*
+* C := C - V * W'
+*
+ IF( M.GT.K ) THEN
+*
+* C2 := C2 - V2 * W'
+*
+ CALL ZGEMM( 'No transpose', 'Conjugate transpose',
+ $ M-K, N, K, -ONE, V( K+1, 1 ), LDV, WORK,
+ $ LDWORK, ONE, C( K+1, 1 ), LDC )
+ END IF
+*
+* W := W * V1'
+*
+ CALL ZTRMM( 'Right', 'Lower', 'Conjugate transpose',
+ $ 'Unit', N, K, ONE, V, LDV, WORK, LDWORK )
+*
+* C1 := C1 - W'
+*
+ DO 30 J = 1, K
+ DO 20 I = 1, N
+ C( J, I ) = C( J, I ) - DCONJG( WORK( I, J ) )
+ 20 CONTINUE
+ 30 CONTINUE
+*
+ ELSE IF( LSAME( SIDE, 'R' ) ) THEN
+*
+* Form C * H or C * H' where C = ( C1 C2 )
+*
+* W := C * V = (C1*V1 + C2*V2) (stored in WORK)
+*
+* W := C1
+*
+ DO 40 J = 1, K
+ CALL ZCOPY( M, C( 1, J ), 1, WORK( 1, J ), 1 )
+ 40 CONTINUE
+*
+* W := W * V1
+*
+ CALL ZTRMM( 'Right', 'Lower', 'No transpose', 'Unit', M,
+ $ K, ONE, V, LDV, WORK, LDWORK )
+ IF( N.GT.K ) THEN
+*
+* W := W + C2 * V2
+*
+ CALL ZGEMM( 'No transpose', 'No transpose', M, K, N-K,
+ $ ONE, C( 1, K+1 ), LDC, V( K+1, 1 ), LDV,
+ $ ONE, WORK, LDWORK )
+ END IF
+*
+* W := W * T or W * T'
+*
+ CALL ZTRMM( 'Right', 'Upper', TRANS, 'Non-unit', M, K,
+ $ ONE, T, LDT, WORK, LDWORK )
+*
+* C := C - W * V'
+*
+ IF( N.GT.K ) THEN
+*
+* C2 := C2 - W * V2'
+*
+ CALL ZGEMM( 'No transpose', 'Conjugate transpose', M,
+ $ N-K, K, -ONE, WORK, LDWORK, V( K+1, 1 ),
+ $ LDV, ONE, C( 1, K+1 ), LDC )
+ END IF
+*
+* W := W * V1'
+*
+ CALL ZTRMM( 'Right', 'Lower', 'Conjugate transpose',
+ $ 'Unit', M, K, ONE, V, LDV, WORK, LDWORK )
+*
+* C1 := C1 - W
+*
+ DO 60 J = 1, K
+ DO 50 I = 1, M
+ C( I, J ) = C( I, J ) - WORK( I, J )
+ 50 CONTINUE
+ 60 CONTINUE
+ END IF
+*
+ ELSE
+*
+* Let V = ( V1 )
+* ( V2 ) (last K rows)
+* where V2 is unit upper triangular.
+*
+ IF( LSAME( SIDE, 'L' ) ) THEN
+*
+* Form H * C or H' * C where C = ( C1 )
+* ( C2 )
+*
+* W := C' * V = (C1'*V1 + C2'*V2) (stored in WORK)
+*
+* W := C2'
+*
+ DO 70 J = 1, K
+ CALL ZCOPY( N, C( M-K+J, 1 ), LDC, WORK( 1, J ), 1 )
+ CALL ZLACGV( N, WORK( 1, J ), 1 )
+ 70 CONTINUE
+*
+* W := W * V2
+*
+ CALL ZTRMM( 'Right', 'Upper', 'No transpose', 'Unit', N,
+ $ K, ONE, V( M-K+1, 1 ), LDV, WORK, LDWORK )
+ IF( M.GT.K ) THEN
+*
+* W := W + C1'*V1
+*
+ CALL ZGEMM( 'Conjugate transpose', 'No transpose', N,
+ $ K, M-K, ONE, C, LDC, V, LDV, ONE, WORK,
+ $ LDWORK )
+ END IF
+*
+* W := W * T' or W * T
+*
+ CALL ZTRMM( 'Right', 'Lower', TRANST, 'Non-unit', N, K,
+ $ ONE, T, LDT, WORK, LDWORK )
+*
+* C := C - V * W'
+*
+ IF( M.GT.K ) THEN
+*
+* C1 := C1 - V1 * W'
+*
+ CALL ZGEMM( 'No transpose', 'Conjugate transpose',
+ $ M-K, N, K, -ONE, V, LDV, WORK, LDWORK,
+ $ ONE, C, LDC )
+ END IF
+*
+* W := W * V2'
+*
+ CALL ZTRMM( 'Right', 'Upper', 'Conjugate transpose',
+ $ 'Unit', N, K, ONE, V( M-K+1, 1 ), LDV, WORK,
+ $ LDWORK )
+*
+* C2 := C2 - W'
+*
+ DO 90 J = 1, K
+ DO 80 I = 1, N
+ C( M-K+J, I ) = C( M-K+J, I ) -
+ $ DCONJG( WORK( I, J ) )
+ 80 CONTINUE
+ 90 CONTINUE
+*
+ ELSE IF( LSAME( SIDE, 'R' ) ) THEN
+*
+* Form C * H or C * H' where C = ( C1 C2 )
+*
+* W := C * V = (C1*V1 + C2*V2) (stored in WORK)
+*
+* W := C2
+*
+ DO 100 J = 1, K
+ CALL ZCOPY( M, C( 1, N-K+J ), 1, WORK( 1, J ), 1 )
+ 100 CONTINUE
+*
+* W := W * V2
+*
+ CALL ZTRMM( 'Right', 'Upper', 'No transpose', 'Unit', M,
+ $ K, ONE, V( N-K+1, 1 ), LDV, WORK, LDWORK )
+ IF( N.GT.K ) THEN
+*
+* W := W + C1 * V1
+*
+ CALL ZGEMM( 'No transpose', 'No transpose', M, K, N-K,
+ $ ONE, C, LDC, V, LDV, ONE, WORK, LDWORK )
+ END IF
+*
+* W := W * T or W * T'
+*
+ CALL ZTRMM( 'Right', 'Lower', TRANS, 'Non-unit', M, K,
+ $ ONE, T, LDT, WORK, LDWORK )
+*
+* C := C - W * V'
+*
+ IF( N.GT.K ) THEN
+*
+* C1 := C1 - W * V1'
+*
+ CALL ZGEMM( 'No transpose', 'Conjugate transpose', M,
+ $ N-K, K, -ONE, WORK, LDWORK, V, LDV, ONE,
+ $ C, LDC )
+ END IF
+*
+* W := W * V2'
+*
+ CALL ZTRMM( 'Right', 'Upper', 'Conjugate transpose',
+ $ 'Unit', M, K, ONE, V( N-K+1, 1 ), LDV, WORK,
+ $ LDWORK )
+*
+* C2 := C2 - W
+*
+ DO 120 J = 1, K
+ DO 110 I = 1, M
+ C( I, N-K+J ) = C( I, N-K+J ) - WORK( I, J )
+ 110 CONTINUE
+ 120 CONTINUE
+ END IF
+ END IF
+*
+ ELSE IF( LSAME( STOREV, 'R' ) ) THEN
+*
+ IF( LSAME( DIRECT, 'F' ) ) THEN
+*
+* Let V = ( V1 V2 ) (V1: first K columns)
+* where V1 is unit upper triangular.
+*
+ IF( LSAME( SIDE, 'L' ) ) THEN
+*
+* Form H * C or H' * C where C = ( C1 )
+* ( C2 )
+*
+* W := C' * V' = (C1'*V1' + C2'*V2') (stored in WORK)
+*
+* W := C1'
+*
+ DO 130 J = 1, K
+ CALL ZCOPY( N, C( J, 1 ), LDC, WORK( 1, J ), 1 )
+ CALL ZLACGV( N, WORK( 1, J ), 1 )
+ 130 CONTINUE
+*
+* W := W * V1'
+*
+ CALL ZTRMM( 'Right', 'Upper', 'Conjugate transpose',
+ $ 'Unit', N, K, ONE, V, LDV, WORK, LDWORK )
+ IF( M.GT.K ) THEN
+*
+* W := W + C2'*V2'
+*
+ CALL ZGEMM( 'Conjugate transpose',
+ $ 'Conjugate transpose', N, K, M-K, ONE,
+ $ C( K+1, 1 ), LDC, V( 1, K+1 ), LDV, ONE,
+ $ WORK, LDWORK )
+ END IF
+*
+* W := W * T' or W * T
+*
+ CALL ZTRMM( 'Right', 'Upper', TRANST, 'Non-unit', N, K,
+ $ ONE, T, LDT, WORK, LDWORK )
+*
+* C := C - V' * W'
+*
+ IF( M.GT.K ) THEN
+*
+* C2 := C2 - V2' * W'
+*
+ CALL ZGEMM( 'Conjugate transpose',
+ $ 'Conjugate transpose', M-K, N, K, -ONE,
+ $ V( 1, K+1 ), LDV, WORK, LDWORK, ONE,
+ $ C( K+1, 1 ), LDC )
+ END IF
+*
+* W := W * V1
+*
+ CALL ZTRMM( 'Right', 'Upper', 'No transpose', 'Unit', N,
+ $ K, ONE, V, LDV, WORK, LDWORK )
+*
+* C1 := C1 - W'
+*
+ DO 150 J = 1, K
+ DO 140 I = 1, N
+ C( J, I ) = C( J, I ) - DCONJG( WORK( I, J ) )
+ 140 CONTINUE
+ 150 CONTINUE
+*
+ ELSE IF( LSAME( SIDE, 'R' ) ) THEN
+*
+* Form C * H or C * H' where C = ( C1 C2 )
+*
+* W := C * V' = (C1*V1' + C2*V2') (stored in WORK)
+*
+* W := C1
+*
+ DO 160 J = 1, K
+ CALL ZCOPY( M, C( 1, J ), 1, WORK( 1, J ), 1 )
+ 160 CONTINUE
+*
+* W := W * V1'
+*
+ CALL ZTRMM( 'Right', 'Upper', 'Conjugate transpose',
+ $ 'Unit', M, K, ONE, V, LDV, WORK, LDWORK )
+ IF( N.GT.K ) THEN
+*
+* W := W + C2 * V2'
+*
+ CALL ZGEMM( 'No transpose', 'Conjugate transpose', M,
+ $ K, N-K, ONE, C( 1, K+1 ), LDC,
+ $ V( 1, K+1 ), LDV, ONE, WORK, LDWORK )
+ END IF
+*
+* W := W * T or W * T'
+*
+ CALL ZTRMM( 'Right', 'Upper', TRANS, 'Non-unit', M, K,
+ $ ONE, T, LDT, WORK, LDWORK )
+*
+* C := C - W * V
+*
+ IF( N.GT.K ) THEN
+*
+* C2 := C2 - W * V2
+*
+ CALL ZGEMM( 'No transpose', 'No transpose', M, N-K, K,
+ $ -ONE, WORK, LDWORK, V( 1, K+1 ), LDV, ONE,
+ $ C( 1, K+1 ), LDC )
+ END IF
+*
+* W := W * V1
+*
+ CALL ZTRMM( 'Right', 'Upper', 'No transpose', 'Unit', M,
+ $ K, ONE, V, LDV, WORK, LDWORK )
+*
+* C1 := C1 - W
+*
+ DO 180 J = 1, K
+ DO 170 I = 1, M
+ C( I, J ) = C( I, J ) - WORK( I, J )
+ 170 CONTINUE
+ 180 CONTINUE
+*
+ END IF
+*
+ ELSE
+*
+* Let V = ( V1 V2 ) (V2: last K columns)
+* where V2 is unit lower triangular.
+*
+ IF( LSAME( SIDE, 'L' ) ) THEN
+*
+* Form H * C or H' * C where C = ( C1 )
+* ( C2 )
+*
+* W := C' * V' = (C1'*V1' + C2'*V2') (stored in WORK)
+*
+* W := C2'
+*
+ DO 190 J = 1, K
+ CALL ZCOPY( N, C( M-K+J, 1 ), LDC, WORK( 1, J ), 1 )
+ CALL ZLACGV( N, WORK( 1, J ), 1 )
+ 190 CONTINUE
+*
+* W := W * V2'
+*
+ CALL ZTRMM( 'Right', 'Lower', 'Conjugate transpose',
+ $ 'Unit', N, K, ONE, V( 1, M-K+1 ), LDV, WORK,
+ $ LDWORK )
+ IF( M.GT.K ) THEN
+*
+* W := W + C1'*V1'
+*
+ CALL ZGEMM( 'Conjugate transpose',
+ $ 'Conjugate transpose', N, K, M-K, ONE, C,
+ $ LDC, V, LDV, ONE, WORK, LDWORK )
+ END IF
+*
+* W := W * T' or W * T
+*
+ CALL ZTRMM( 'Right', 'Lower', TRANST, 'Non-unit', N, K,
+ $ ONE, T, LDT, WORK, LDWORK )
+*
+* C := C - V' * W'
+*
+ IF( M.GT.K ) THEN
+*
+* C1 := C1 - V1' * W'
+*
+ CALL ZGEMM( 'Conjugate transpose',
+ $ 'Conjugate transpose', M-K, N, K, -ONE, V,
+ $ LDV, WORK, LDWORK, ONE, C, LDC )
+ END IF
+*
+* W := W * V2
+*
+ CALL ZTRMM( 'Right', 'Lower', 'No transpose', 'Unit', N,
+ $ K, ONE, V( 1, M-K+1 ), LDV, WORK, LDWORK )
+*
+* C2 := C2 - W'
+*
+ DO 210 J = 1, K
+ DO 200 I = 1, N
+ C( M-K+J, I ) = C( M-K+J, I ) -
+ $ DCONJG( WORK( I, J ) )
+ 200 CONTINUE
+ 210 CONTINUE
+*
+ ELSE IF( LSAME( SIDE, 'R' ) ) THEN
+*
+* Form C * H or C * H' where C = ( C1 C2 )
+*
+* W := C * V' = (C1*V1' + C2*V2') (stored in WORK)
+*
+* W := C2
+*
+ DO 220 J = 1, K
+ CALL ZCOPY( M, C( 1, N-K+J ), 1, WORK( 1, J ), 1 )
+ 220 CONTINUE
+*
+* W := W * V2'
+*
+ CALL ZTRMM( 'Right', 'Lower', 'Conjugate transpose',
+ $ 'Unit', M, K, ONE, V( 1, N-K+1 ), LDV, WORK,
+ $ LDWORK )
+ IF( N.GT.K ) THEN
+*
+* W := W + C1 * V1'
+*
+ CALL ZGEMM( 'No transpose', 'Conjugate transpose', M,
+ $ K, N-K, ONE, C, LDC, V, LDV, ONE, WORK,
+ $ LDWORK )
+ END IF
+*
+* W := W * T or W * T'
+*
+ CALL ZTRMM( 'Right', 'Lower', TRANS, 'Non-unit', M, K,
+ $ ONE, T, LDT, WORK, LDWORK )
+*
+* C := C - W * V
+*
+ IF( N.GT.K ) THEN
+*
+* C1 := C1 - W * V1
+*
+ CALL ZGEMM( 'No transpose', 'No transpose', M, N-K, K,
+ $ -ONE, WORK, LDWORK, V, LDV, ONE, C, LDC )
+ END IF
+*
+* W := W * V2
+*
+ CALL ZTRMM( 'Right', 'Lower', 'No transpose', 'Unit', M,
+ $ K, ONE, V( 1, N-K+1 ), LDV, WORK, LDWORK )
+*
+* C1 := C1 - W
+*
+ DO 240 J = 1, K
+ DO 230 I = 1, M
+ C( I, N-K+J ) = C( I, N-K+J ) - WORK( I, J )
+ 230 CONTINUE
+ 240 CONTINUE
+*
+ END IF
+*
+ END IF
+ END IF
+*
+ RETURN
+*
+* End of ZLARFB
+*
+ END