summaryrefslogtreecommitdiff
path: root/2.3-1/src/fortran/lapack/zlanhe.f
diff options
context:
space:
mode:
Diffstat (limited to '2.3-1/src/fortran/lapack/zlanhe.f')
-rw-r--r--2.3-1/src/fortran/lapack/zlanhe.f187
1 files changed, 187 insertions, 0 deletions
diff --git a/2.3-1/src/fortran/lapack/zlanhe.f b/2.3-1/src/fortran/lapack/zlanhe.f
new file mode 100644
index 00000000..86e57fcd
--- /dev/null
+++ b/2.3-1/src/fortran/lapack/zlanhe.f
@@ -0,0 +1,187 @@
+ DOUBLE PRECISION FUNCTION ZLANHE( NORM, UPLO, N, A, LDA, WORK )
+*
+* -- LAPACK auxiliary routine (version 3.1) --
+* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd..
+* November 2006
+*
+* .. Scalar Arguments ..
+ CHARACTER NORM, UPLO
+ INTEGER LDA, N
+* ..
+* .. Array Arguments ..
+ DOUBLE PRECISION WORK( * )
+ COMPLEX*16 A( LDA, * )
+* ..
+*
+* Purpose
+* =======
+*
+* ZLANHE returns the value of the one norm, or the Frobenius norm, or
+* the infinity norm, or the element of largest absolute value of a
+* complex hermitian matrix A.
+*
+* Description
+* ===========
+*
+* ZLANHE returns the value
+*
+* ZLANHE = ( max(abs(A(i,j))), NORM = 'M' or 'm'
+* (
+* ( norm1(A), NORM = '1', 'O' or 'o'
+* (
+* ( normI(A), NORM = 'I' or 'i'
+* (
+* ( normF(A), NORM = 'F', 'f', 'E' or 'e'
+*
+* where norm1 denotes the one norm of a matrix (maximum column sum),
+* normI denotes the infinity norm of a matrix (maximum row sum) and
+* normF denotes the Frobenius norm of a matrix (square root of sum of
+* squares). Note that max(abs(A(i,j))) is not a consistent matrix norm.
+*
+* Arguments
+* =========
+*
+* NORM (input) CHARACTER*1
+* Specifies the value to be returned in ZLANHE as described
+* above.
+*
+* UPLO (input) CHARACTER*1
+* Specifies whether the upper or lower triangular part of the
+* hermitian matrix A is to be referenced.
+* = 'U': Upper triangular part of A is referenced
+* = 'L': Lower triangular part of A is referenced
+*
+* N (input) INTEGER
+* The order of the matrix A. N >= 0. When N = 0, ZLANHE is
+* set to zero.
+*
+* A (input) COMPLEX*16 array, dimension (LDA,N)
+* The hermitian matrix A. If UPLO = 'U', the leading n by n
+* upper triangular part of A contains the upper triangular part
+* of the matrix A, and the strictly lower triangular part of A
+* is not referenced. If UPLO = 'L', the leading n by n lower
+* triangular part of A contains the lower triangular part of
+* the matrix A, and the strictly upper triangular part of A is
+* not referenced. Note that the imaginary parts of the diagonal
+* elements need not be set and are assumed to be zero.
+*
+* LDA (input) INTEGER
+* The leading dimension of the array A. LDA >= max(N,1).
+*
+* WORK (workspace) DOUBLE PRECISION array, dimension (MAX(1,LWORK)),
+* where LWORK >= N when NORM = 'I' or '1' or 'O'; otherwise,
+* WORK is not referenced.
+*
+* =====================================================================
+*
+* .. Parameters ..
+ DOUBLE PRECISION ONE, ZERO
+ PARAMETER ( ONE = 1.0D+0, ZERO = 0.0D+0 )
+* ..
+* .. Local Scalars ..
+ INTEGER I, J
+ DOUBLE PRECISION ABSA, SCALE, SUM, VALUE
+* ..
+* .. External Functions ..
+ LOGICAL LSAME
+ EXTERNAL LSAME
+* ..
+* .. External Subroutines ..
+ EXTERNAL ZLASSQ
+* ..
+* .. Intrinsic Functions ..
+ INTRINSIC ABS, DBLE, MAX, SQRT
+* ..
+* .. Executable Statements ..
+*
+ IF( N.EQ.0 ) THEN
+ VALUE = ZERO
+ ELSE IF( LSAME( NORM, 'M' ) ) THEN
+*
+* Find max(abs(A(i,j))).
+*
+ VALUE = ZERO
+ IF( LSAME( UPLO, 'U' ) ) THEN
+ DO 20 J = 1, N
+ DO 10 I = 1, J - 1
+ VALUE = MAX( VALUE, ABS( A( I, J ) ) )
+ 10 CONTINUE
+ VALUE = MAX( VALUE, ABS( DBLE( A( J, J ) ) ) )
+ 20 CONTINUE
+ ELSE
+ DO 40 J = 1, N
+ VALUE = MAX( VALUE, ABS( DBLE( A( J, J ) ) ) )
+ DO 30 I = J + 1, N
+ VALUE = MAX( VALUE, ABS( A( I, J ) ) )
+ 30 CONTINUE
+ 40 CONTINUE
+ END IF
+ ELSE IF( ( LSAME( NORM, 'I' ) ) .OR. ( LSAME( NORM, 'O' ) ) .OR.
+ $ ( NORM.EQ.'1' ) ) THEN
+*
+* Find normI(A) ( = norm1(A), since A is hermitian).
+*
+ VALUE = ZERO
+ IF( LSAME( UPLO, 'U' ) ) THEN
+ DO 60 J = 1, N
+ SUM = ZERO
+ DO 50 I = 1, J - 1
+ ABSA = ABS( A( I, J ) )
+ SUM = SUM + ABSA
+ WORK( I ) = WORK( I ) + ABSA
+ 50 CONTINUE
+ WORK( J ) = SUM + ABS( DBLE( A( J, J ) ) )
+ 60 CONTINUE
+ DO 70 I = 1, N
+ VALUE = MAX( VALUE, WORK( I ) )
+ 70 CONTINUE
+ ELSE
+ DO 80 I = 1, N
+ WORK( I ) = ZERO
+ 80 CONTINUE
+ DO 100 J = 1, N
+ SUM = WORK( J ) + ABS( DBLE( A( J, J ) ) )
+ DO 90 I = J + 1, N
+ ABSA = ABS( A( I, J ) )
+ SUM = SUM + ABSA
+ WORK( I ) = WORK( I ) + ABSA
+ 90 CONTINUE
+ VALUE = MAX( VALUE, SUM )
+ 100 CONTINUE
+ END IF
+ ELSE IF( ( LSAME( NORM, 'F' ) ) .OR. ( LSAME( NORM, 'E' ) ) ) THEN
+*
+* Find normF(A).
+*
+ SCALE = ZERO
+ SUM = ONE
+ IF( LSAME( UPLO, 'U' ) ) THEN
+ DO 110 J = 2, N
+ CALL ZLASSQ( J-1, A( 1, J ), 1, SCALE, SUM )
+ 110 CONTINUE
+ ELSE
+ DO 120 J = 1, N - 1
+ CALL ZLASSQ( N-J, A( J+1, J ), 1, SCALE, SUM )
+ 120 CONTINUE
+ END IF
+ SUM = 2*SUM
+ DO 130 I = 1, N
+ IF( DBLE( A( I, I ) ).NE.ZERO ) THEN
+ ABSA = ABS( DBLE( A( I, I ) ) )
+ IF( SCALE.LT.ABSA ) THEN
+ SUM = ONE + SUM*( SCALE / ABSA )**2
+ SCALE = ABSA
+ ELSE
+ SUM = SUM + ( ABSA / SCALE )**2
+ END IF
+ END IF
+ 130 CONTINUE
+ VALUE = SCALE*SQRT( SUM )
+ END IF
+*
+ ZLANHE = VALUE
+ RETURN
+*
+* End of ZLANHE
+*
+ END