summaryrefslogtreecommitdiff
path: root/2.3-1/src/fortran/lapack/zlaic1.f
diff options
context:
space:
mode:
Diffstat (limited to '2.3-1/src/fortran/lapack/zlaic1.f')
-rw-r--r--2.3-1/src/fortran/lapack/zlaic1.f295
1 files changed, 295 insertions, 0 deletions
diff --git a/2.3-1/src/fortran/lapack/zlaic1.f b/2.3-1/src/fortran/lapack/zlaic1.f
new file mode 100644
index 00000000..589f0889
--- /dev/null
+++ b/2.3-1/src/fortran/lapack/zlaic1.f
@@ -0,0 +1,295 @@
+ SUBROUTINE ZLAIC1( JOB, J, X, SEST, W, GAMMA, SESTPR, S, C )
+*
+* -- LAPACK auxiliary routine (version 3.1) --
+* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd..
+* November 2006
+*
+* .. Scalar Arguments ..
+ INTEGER J, JOB
+ DOUBLE PRECISION SEST, SESTPR
+ COMPLEX*16 C, GAMMA, S
+* ..
+* .. Array Arguments ..
+ COMPLEX*16 W( J ), X( J )
+* ..
+*
+* Purpose
+* =======
+*
+* ZLAIC1 applies one step of incremental condition estimation in
+* its simplest version:
+*
+* Let x, twonorm(x) = 1, be an approximate singular vector of an j-by-j
+* lower triangular matrix L, such that
+* twonorm(L*x) = sest
+* Then ZLAIC1 computes sestpr, s, c such that
+* the vector
+* [ s*x ]
+* xhat = [ c ]
+* is an approximate singular vector of
+* [ L 0 ]
+* Lhat = [ w' gamma ]
+* in the sense that
+* twonorm(Lhat*xhat) = sestpr.
+*
+* Depending on JOB, an estimate for the largest or smallest singular
+* value is computed.
+*
+* Note that [s c]' and sestpr**2 is an eigenpair of the system
+*
+* diag(sest*sest, 0) + [alpha gamma] * [ conjg(alpha) ]
+* [ conjg(gamma) ]
+*
+* where alpha = conjg(x)'*w.
+*
+* Arguments
+* =========
+*
+* JOB (input) INTEGER
+* = 1: an estimate for the largest singular value is computed.
+* = 2: an estimate for the smallest singular value is computed.
+*
+* J (input) INTEGER
+* Length of X and W
+*
+* X (input) COMPLEX*16 array, dimension (J)
+* The j-vector x.
+*
+* SEST (input) DOUBLE PRECISION
+* Estimated singular value of j by j matrix L
+*
+* W (input) COMPLEX*16 array, dimension (J)
+* The j-vector w.
+*
+* GAMMA (input) COMPLEX*16
+* The diagonal element gamma.
+*
+* SESTPR (output) DOUBLE PRECISION
+* Estimated singular value of (j+1) by (j+1) matrix Lhat.
+*
+* S (output) COMPLEX*16
+* Sine needed in forming xhat.
+*
+* C (output) COMPLEX*16
+* Cosine needed in forming xhat.
+*
+* =====================================================================
+*
+* .. Parameters ..
+ DOUBLE PRECISION ZERO, ONE, TWO
+ PARAMETER ( ZERO = 0.0D0, ONE = 1.0D0, TWO = 2.0D0 )
+ DOUBLE PRECISION HALF, FOUR
+ PARAMETER ( HALF = 0.5D0, FOUR = 4.0D0 )
+* ..
+* .. Local Scalars ..
+ DOUBLE PRECISION ABSALP, ABSEST, ABSGAM, B, EPS, NORMA, S1, S2,
+ $ SCL, T, TEST, TMP, ZETA1, ZETA2
+ COMPLEX*16 ALPHA, COSINE, SINE
+* ..
+* .. Intrinsic Functions ..
+ INTRINSIC ABS, DCONJG, MAX, SQRT
+* ..
+* .. External Functions ..
+ DOUBLE PRECISION DLAMCH
+ COMPLEX*16 ZDOTC
+ EXTERNAL DLAMCH, ZDOTC
+* ..
+* .. Executable Statements ..
+*
+ EPS = DLAMCH( 'Epsilon' )
+ ALPHA = ZDOTC( J, X, 1, W, 1 )
+*
+ ABSALP = ABS( ALPHA )
+ ABSGAM = ABS( GAMMA )
+ ABSEST = ABS( SEST )
+*
+ IF( JOB.EQ.1 ) THEN
+*
+* Estimating largest singular value
+*
+* special cases
+*
+ IF( SEST.EQ.ZERO ) THEN
+ S1 = MAX( ABSGAM, ABSALP )
+ IF( S1.EQ.ZERO ) THEN
+ S = ZERO
+ C = ONE
+ SESTPR = ZERO
+ ELSE
+ S = ALPHA / S1
+ C = GAMMA / S1
+ TMP = SQRT( S*DCONJG( S )+C*DCONJG( C ) )
+ S = S / TMP
+ C = C / TMP
+ SESTPR = S1*TMP
+ END IF
+ RETURN
+ ELSE IF( ABSGAM.LE.EPS*ABSEST ) THEN
+ S = ONE
+ C = ZERO
+ TMP = MAX( ABSEST, ABSALP )
+ S1 = ABSEST / TMP
+ S2 = ABSALP / TMP
+ SESTPR = TMP*SQRT( S1*S1+S2*S2 )
+ RETURN
+ ELSE IF( ABSALP.LE.EPS*ABSEST ) THEN
+ S1 = ABSGAM
+ S2 = ABSEST
+ IF( S1.LE.S2 ) THEN
+ S = ONE
+ C = ZERO
+ SESTPR = S2
+ ELSE
+ S = ZERO
+ C = ONE
+ SESTPR = S1
+ END IF
+ RETURN
+ ELSE IF( ABSEST.LE.EPS*ABSALP .OR. ABSEST.LE.EPS*ABSGAM ) THEN
+ S1 = ABSGAM
+ S2 = ABSALP
+ IF( S1.LE.S2 ) THEN
+ TMP = S1 / S2
+ SCL = SQRT( ONE+TMP*TMP )
+ SESTPR = S2*SCL
+ S = ( ALPHA / S2 ) / SCL
+ C = ( GAMMA / S2 ) / SCL
+ ELSE
+ TMP = S2 / S1
+ SCL = SQRT( ONE+TMP*TMP )
+ SESTPR = S1*SCL
+ S = ( ALPHA / S1 ) / SCL
+ C = ( GAMMA / S1 ) / SCL
+ END IF
+ RETURN
+ ELSE
+*
+* normal case
+*
+ ZETA1 = ABSALP / ABSEST
+ ZETA2 = ABSGAM / ABSEST
+*
+ B = ( ONE-ZETA1*ZETA1-ZETA2*ZETA2 )*HALF
+ C = ZETA1*ZETA1
+ IF( B.GT.ZERO ) THEN
+ T = C / ( B+SQRT( B*B+C ) )
+ ELSE
+ T = SQRT( B*B+C ) - B
+ END IF
+*
+ SINE = -( ALPHA / ABSEST ) / T
+ COSINE = -( GAMMA / ABSEST ) / ( ONE+T )
+ TMP = SQRT( SINE*DCONJG( SINE )+COSINE*DCONJG( COSINE ) )
+ S = SINE / TMP
+ C = COSINE / TMP
+ SESTPR = SQRT( T+ONE )*ABSEST
+ RETURN
+ END IF
+*
+ ELSE IF( JOB.EQ.2 ) THEN
+*
+* Estimating smallest singular value
+*
+* special cases
+*
+ IF( SEST.EQ.ZERO ) THEN
+ SESTPR = ZERO
+ IF( MAX( ABSGAM, ABSALP ).EQ.ZERO ) THEN
+ SINE = ONE
+ COSINE = ZERO
+ ELSE
+ SINE = -DCONJG( GAMMA )
+ COSINE = DCONJG( ALPHA )
+ END IF
+ S1 = MAX( ABS( SINE ), ABS( COSINE ) )
+ S = SINE / S1
+ C = COSINE / S1
+ TMP = SQRT( S*DCONJG( S )+C*DCONJG( C ) )
+ S = S / TMP
+ C = C / TMP
+ RETURN
+ ELSE IF( ABSGAM.LE.EPS*ABSEST ) THEN
+ S = ZERO
+ C = ONE
+ SESTPR = ABSGAM
+ RETURN
+ ELSE IF( ABSALP.LE.EPS*ABSEST ) THEN
+ S1 = ABSGAM
+ S2 = ABSEST
+ IF( S1.LE.S2 ) THEN
+ S = ZERO
+ C = ONE
+ SESTPR = S1
+ ELSE
+ S = ONE
+ C = ZERO
+ SESTPR = S2
+ END IF
+ RETURN
+ ELSE IF( ABSEST.LE.EPS*ABSALP .OR. ABSEST.LE.EPS*ABSGAM ) THEN
+ S1 = ABSGAM
+ S2 = ABSALP
+ IF( S1.LE.S2 ) THEN
+ TMP = S1 / S2
+ SCL = SQRT( ONE+TMP*TMP )
+ SESTPR = ABSEST*( TMP / SCL )
+ S = -( DCONJG( GAMMA ) / S2 ) / SCL
+ C = ( DCONJG( ALPHA ) / S2 ) / SCL
+ ELSE
+ TMP = S2 / S1
+ SCL = SQRT( ONE+TMP*TMP )
+ SESTPR = ABSEST / SCL
+ S = -( DCONJG( GAMMA ) / S1 ) / SCL
+ C = ( DCONJG( ALPHA ) / S1 ) / SCL
+ END IF
+ RETURN
+ ELSE
+*
+* normal case
+*
+ ZETA1 = ABSALP / ABSEST
+ ZETA2 = ABSGAM / ABSEST
+*
+ NORMA = MAX( ONE+ZETA1*ZETA1+ZETA1*ZETA2,
+ $ ZETA1*ZETA2+ZETA2*ZETA2 )
+*
+* See if root is closer to zero or to ONE
+*
+ TEST = ONE + TWO*( ZETA1-ZETA2 )*( ZETA1+ZETA2 )
+ IF( TEST.GE.ZERO ) THEN
+*
+* root is close to zero, compute directly
+*
+ B = ( ZETA1*ZETA1+ZETA2*ZETA2+ONE )*HALF
+ C = ZETA2*ZETA2
+ T = C / ( B+SQRT( ABS( B*B-C ) ) )
+ SINE = ( ALPHA / ABSEST ) / ( ONE-T )
+ COSINE = -( GAMMA / ABSEST ) / T
+ SESTPR = SQRT( T+FOUR*EPS*EPS*NORMA )*ABSEST
+ ELSE
+*
+* root is closer to ONE, shift by that amount
+*
+ B = ( ZETA2*ZETA2+ZETA1*ZETA1-ONE )*HALF
+ C = ZETA1*ZETA1
+ IF( B.GE.ZERO ) THEN
+ T = -C / ( B+SQRT( B*B+C ) )
+ ELSE
+ T = B - SQRT( B*B+C )
+ END IF
+ SINE = -( ALPHA / ABSEST ) / T
+ COSINE = -( GAMMA / ABSEST ) / ( ONE+T )
+ SESTPR = SQRT( ONE+T+FOUR*EPS*EPS*NORMA )*ABSEST
+ END IF
+ TMP = SQRT( SINE*DCONJG( SINE )+COSINE*DCONJG( COSINE ) )
+ S = SINE / TMP
+ C = COSINE / TMP
+ RETURN
+*
+ END IF
+ END IF
+ RETURN
+*
+* End of ZLAIC1
+*
+ END