diff options
Diffstat (limited to '2.3-1/src/fortran/lapack/zlaic1.f')
-rw-r--r-- | 2.3-1/src/fortran/lapack/zlaic1.f | 295 |
1 files changed, 295 insertions, 0 deletions
diff --git a/2.3-1/src/fortran/lapack/zlaic1.f b/2.3-1/src/fortran/lapack/zlaic1.f new file mode 100644 index 00000000..589f0889 --- /dev/null +++ b/2.3-1/src/fortran/lapack/zlaic1.f @@ -0,0 +1,295 @@ + SUBROUTINE ZLAIC1( JOB, J, X, SEST, W, GAMMA, SESTPR, S, C ) +* +* -- LAPACK auxiliary routine (version 3.1) -- +* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. +* November 2006 +* +* .. Scalar Arguments .. + INTEGER J, JOB + DOUBLE PRECISION SEST, SESTPR + COMPLEX*16 C, GAMMA, S +* .. +* .. Array Arguments .. + COMPLEX*16 W( J ), X( J ) +* .. +* +* Purpose +* ======= +* +* ZLAIC1 applies one step of incremental condition estimation in +* its simplest version: +* +* Let x, twonorm(x) = 1, be an approximate singular vector of an j-by-j +* lower triangular matrix L, such that +* twonorm(L*x) = sest +* Then ZLAIC1 computes sestpr, s, c such that +* the vector +* [ s*x ] +* xhat = [ c ] +* is an approximate singular vector of +* [ L 0 ] +* Lhat = [ w' gamma ] +* in the sense that +* twonorm(Lhat*xhat) = sestpr. +* +* Depending on JOB, an estimate for the largest or smallest singular +* value is computed. +* +* Note that [s c]' and sestpr**2 is an eigenpair of the system +* +* diag(sest*sest, 0) + [alpha gamma] * [ conjg(alpha) ] +* [ conjg(gamma) ] +* +* where alpha = conjg(x)'*w. +* +* Arguments +* ========= +* +* JOB (input) INTEGER +* = 1: an estimate for the largest singular value is computed. +* = 2: an estimate for the smallest singular value is computed. +* +* J (input) INTEGER +* Length of X and W +* +* X (input) COMPLEX*16 array, dimension (J) +* The j-vector x. +* +* SEST (input) DOUBLE PRECISION +* Estimated singular value of j by j matrix L +* +* W (input) COMPLEX*16 array, dimension (J) +* The j-vector w. +* +* GAMMA (input) COMPLEX*16 +* The diagonal element gamma. +* +* SESTPR (output) DOUBLE PRECISION +* Estimated singular value of (j+1) by (j+1) matrix Lhat. +* +* S (output) COMPLEX*16 +* Sine needed in forming xhat. +* +* C (output) COMPLEX*16 +* Cosine needed in forming xhat. +* +* ===================================================================== +* +* .. Parameters .. + DOUBLE PRECISION ZERO, ONE, TWO + PARAMETER ( ZERO = 0.0D0, ONE = 1.0D0, TWO = 2.0D0 ) + DOUBLE PRECISION HALF, FOUR + PARAMETER ( HALF = 0.5D0, FOUR = 4.0D0 ) +* .. +* .. Local Scalars .. + DOUBLE PRECISION ABSALP, ABSEST, ABSGAM, B, EPS, NORMA, S1, S2, + $ SCL, T, TEST, TMP, ZETA1, ZETA2 + COMPLEX*16 ALPHA, COSINE, SINE +* .. +* .. Intrinsic Functions .. + INTRINSIC ABS, DCONJG, MAX, SQRT +* .. +* .. External Functions .. + DOUBLE PRECISION DLAMCH + COMPLEX*16 ZDOTC + EXTERNAL DLAMCH, ZDOTC +* .. +* .. Executable Statements .. +* + EPS = DLAMCH( 'Epsilon' ) + ALPHA = ZDOTC( J, X, 1, W, 1 ) +* + ABSALP = ABS( ALPHA ) + ABSGAM = ABS( GAMMA ) + ABSEST = ABS( SEST ) +* + IF( JOB.EQ.1 ) THEN +* +* Estimating largest singular value +* +* special cases +* + IF( SEST.EQ.ZERO ) THEN + S1 = MAX( ABSGAM, ABSALP ) + IF( S1.EQ.ZERO ) THEN + S = ZERO + C = ONE + SESTPR = ZERO + ELSE + S = ALPHA / S1 + C = GAMMA / S1 + TMP = SQRT( S*DCONJG( S )+C*DCONJG( C ) ) + S = S / TMP + C = C / TMP + SESTPR = S1*TMP + END IF + RETURN + ELSE IF( ABSGAM.LE.EPS*ABSEST ) THEN + S = ONE + C = ZERO + TMP = MAX( ABSEST, ABSALP ) + S1 = ABSEST / TMP + S2 = ABSALP / TMP + SESTPR = TMP*SQRT( S1*S1+S2*S2 ) + RETURN + ELSE IF( ABSALP.LE.EPS*ABSEST ) THEN + S1 = ABSGAM + S2 = ABSEST + IF( S1.LE.S2 ) THEN + S = ONE + C = ZERO + SESTPR = S2 + ELSE + S = ZERO + C = ONE + SESTPR = S1 + END IF + RETURN + ELSE IF( ABSEST.LE.EPS*ABSALP .OR. ABSEST.LE.EPS*ABSGAM ) THEN + S1 = ABSGAM + S2 = ABSALP + IF( S1.LE.S2 ) THEN + TMP = S1 / S2 + SCL = SQRT( ONE+TMP*TMP ) + SESTPR = S2*SCL + S = ( ALPHA / S2 ) / SCL + C = ( GAMMA / S2 ) / SCL + ELSE + TMP = S2 / S1 + SCL = SQRT( ONE+TMP*TMP ) + SESTPR = S1*SCL + S = ( ALPHA / S1 ) / SCL + C = ( GAMMA / S1 ) / SCL + END IF + RETURN + ELSE +* +* normal case +* + ZETA1 = ABSALP / ABSEST + ZETA2 = ABSGAM / ABSEST +* + B = ( ONE-ZETA1*ZETA1-ZETA2*ZETA2 )*HALF + C = ZETA1*ZETA1 + IF( B.GT.ZERO ) THEN + T = C / ( B+SQRT( B*B+C ) ) + ELSE + T = SQRT( B*B+C ) - B + END IF +* + SINE = -( ALPHA / ABSEST ) / T + COSINE = -( GAMMA / ABSEST ) / ( ONE+T ) + TMP = SQRT( SINE*DCONJG( SINE )+COSINE*DCONJG( COSINE ) ) + S = SINE / TMP + C = COSINE / TMP + SESTPR = SQRT( T+ONE )*ABSEST + RETURN + END IF +* + ELSE IF( JOB.EQ.2 ) THEN +* +* Estimating smallest singular value +* +* special cases +* + IF( SEST.EQ.ZERO ) THEN + SESTPR = ZERO + IF( MAX( ABSGAM, ABSALP ).EQ.ZERO ) THEN + SINE = ONE + COSINE = ZERO + ELSE + SINE = -DCONJG( GAMMA ) + COSINE = DCONJG( ALPHA ) + END IF + S1 = MAX( ABS( SINE ), ABS( COSINE ) ) + S = SINE / S1 + C = COSINE / S1 + TMP = SQRT( S*DCONJG( S )+C*DCONJG( C ) ) + S = S / TMP + C = C / TMP + RETURN + ELSE IF( ABSGAM.LE.EPS*ABSEST ) THEN + S = ZERO + C = ONE + SESTPR = ABSGAM + RETURN + ELSE IF( ABSALP.LE.EPS*ABSEST ) THEN + S1 = ABSGAM + S2 = ABSEST + IF( S1.LE.S2 ) THEN + S = ZERO + C = ONE + SESTPR = S1 + ELSE + S = ONE + C = ZERO + SESTPR = S2 + END IF + RETURN + ELSE IF( ABSEST.LE.EPS*ABSALP .OR. ABSEST.LE.EPS*ABSGAM ) THEN + S1 = ABSGAM + S2 = ABSALP + IF( S1.LE.S2 ) THEN + TMP = S1 / S2 + SCL = SQRT( ONE+TMP*TMP ) + SESTPR = ABSEST*( TMP / SCL ) + S = -( DCONJG( GAMMA ) / S2 ) / SCL + C = ( DCONJG( ALPHA ) / S2 ) / SCL + ELSE + TMP = S2 / S1 + SCL = SQRT( ONE+TMP*TMP ) + SESTPR = ABSEST / SCL + S = -( DCONJG( GAMMA ) / S1 ) / SCL + C = ( DCONJG( ALPHA ) / S1 ) / SCL + END IF + RETURN + ELSE +* +* normal case +* + ZETA1 = ABSALP / ABSEST + ZETA2 = ABSGAM / ABSEST +* + NORMA = MAX( ONE+ZETA1*ZETA1+ZETA1*ZETA2, + $ ZETA1*ZETA2+ZETA2*ZETA2 ) +* +* See if root is closer to zero or to ONE +* + TEST = ONE + TWO*( ZETA1-ZETA2 )*( ZETA1+ZETA2 ) + IF( TEST.GE.ZERO ) THEN +* +* root is close to zero, compute directly +* + B = ( ZETA1*ZETA1+ZETA2*ZETA2+ONE )*HALF + C = ZETA2*ZETA2 + T = C / ( B+SQRT( ABS( B*B-C ) ) ) + SINE = ( ALPHA / ABSEST ) / ( ONE-T ) + COSINE = -( GAMMA / ABSEST ) / T + SESTPR = SQRT( T+FOUR*EPS*EPS*NORMA )*ABSEST + ELSE +* +* root is closer to ONE, shift by that amount +* + B = ( ZETA2*ZETA2+ZETA1*ZETA1-ONE )*HALF + C = ZETA1*ZETA1 + IF( B.GE.ZERO ) THEN + T = -C / ( B+SQRT( B*B+C ) ) + ELSE + T = B - SQRT( B*B+C ) + END IF + SINE = -( ALPHA / ABSEST ) / T + COSINE = -( GAMMA / ABSEST ) / ( ONE+T ) + SESTPR = SQRT( ONE+T+FOUR*EPS*EPS*NORMA )*ABSEST + END IF + TMP = SQRT( SINE*DCONJG( SINE )+COSINE*DCONJG( COSINE ) ) + S = SINE / TMP + C = COSINE / TMP + RETURN +* + END IF + END IF + RETURN +* +* End of ZLAIC1 +* + END |