summaryrefslogtreecommitdiff
path: root/2.3-1/src/fortran/lapack/zlahqr.f
diff options
context:
space:
mode:
Diffstat (limited to '2.3-1/src/fortran/lapack/zlahqr.f')
-rw-r--r--2.3-1/src/fortran/lapack/zlahqr.f470
1 files changed, 470 insertions, 0 deletions
diff --git a/2.3-1/src/fortran/lapack/zlahqr.f b/2.3-1/src/fortran/lapack/zlahqr.f
new file mode 100644
index 00000000..9ce9be19
--- /dev/null
+++ b/2.3-1/src/fortran/lapack/zlahqr.f
@@ -0,0 +1,470 @@
+ SUBROUTINE ZLAHQR( WANTT, WANTZ, N, ILO, IHI, H, LDH, W, ILOZ,
+ $ IHIZ, Z, LDZ, INFO )
+*
+* -- LAPACK auxiliary routine (version 3.1) --
+* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd..
+* November 2006
+*
+* .. Scalar Arguments ..
+ INTEGER IHI, IHIZ, ILO, ILOZ, INFO, LDH, LDZ, N
+ LOGICAL WANTT, WANTZ
+* ..
+* .. Array Arguments ..
+ COMPLEX*16 H( LDH, * ), W( * ), Z( LDZ, * )
+* ..
+*
+* Purpose
+* =======
+*
+* ZLAHQR is an auxiliary routine called by CHSEQR to update the
+* eigenvalues and Schur decomposition already computed by CHSEQR, by
+* dealing with the Hessenberg submatrix in rows and columns ILO to
+* IHI.
+*
+* Arguments
+* =========
+*
+* WANTT (input) LOGICAL
+* = .TRUE. : the full Schur form T is required;
+* = .FALSE.: only eigenvalues are required.
+*
+* WANTZ (input) LOGICAL
+* = .TRUE. : the matrix of Schur vectors Z is required;
+* = .FALSE.: Schur vectors are not required.
+*
+* N (input) INTEGER
+* The order of the matrix H. N >= 0.
+*
+* ILO (input) INTEGER
+* IHI (input) INTEGER
+* It is assumed that H is already upper triangular in rows and
+* columns IHI+1:N, and that H(ILO,ILO-1) = 0 (unless ILO = 1).
+* ZLAHQR works primarily with the Hessenberg submatrix in rows
+* and columns ILO to IHI, but applies transformations to all of
+* H if WANTT is .TRUE..
+* 1 <= ILO <= max(1,IHI); IHI <= N.
+*
+* H (input/output) COMPLEX*16 array, dimension (LDH,N)
+* On entry, the upper Hessenberg matrix H.
+* On exit, if INFO is zero and if WANTT is .TRUE., then H
+* is upper triangular in rows and columns ILO:IHI. If INFO
+* is zero and if WANTT is .FALSE., then the contents of H
+* are unspecified on exit. The output state of H in case
+* INF is positive is below under the description of INFO.
+*
+* LDH (input) INTEGER
+* The leading dimension of the array H. LDH >= max(1,N).
+*
+* W (output) COMPLEX*16 array, dimension (N)
+* The computed eigenvalues ILO to IHI are stored in the
+* corresponding elements of W. If WANTT is .TRUE., the
+* eigenvalues are stored in the same order as on the diagonal
+* of the Schur form returned in H, with W(i) = H(i,i).
+*
+* ILOZ (input) INTEGER
+* IHIZ (input) INTEGER
+* Specify the rows of Z to which transformations must be
+* applied if WANTZ is .TRUE..
+* 1 <= ILOZ <= ILO; IHI <= IHIZ <= N.
+*
+* Z (input/output) COMPLEX*16 array, dimension (LDZ,N)
+* If WANTZ is .TRUE., on entry Z must contain the current
+* matrix Z of transformations accumulated by CHSEQR, and on
+* exit Z has been updated; transformations are applied only to
+* the submatrix Z(ILOZ:IHIZ,ILO:IHI).
+* If WANTZ is .FALSE., Z is not referenced.
+*
+* LDZ (input) INTEGER
+* The leading dimension of the array Z. LDZ >= max(1,N).
+*
+* INFO (output) INTEGER
+* = 0: successful exit
+* .GT. 0: if INFO = i, ZLAHQR failed to compute all the
+* eigenvalues ILO to IHI in a total of 30 iterations
+* per eigenvalue; elements i+1:ihi of W contain
+* those eigenvalues which have been successfully
+* computed.
+*
+* If INFO .GT. 0 and WANTT is .FALSE., then on exit,
+* the remaining unconverged eigenvalues are the
+* eigenvalues of the upper Hessenberg matrix
+* rows and columns ILO thorugh INFO of the final,
+* output value of H.
+*
+* If INFO .GT. 0 and WANTT is .TRUE., then on exit
+* (*) (initial value of H)*U = U*(final value of H)
+* where U is an orthognal matrix. The final
+* value of H is upper Hessenberg and triangular in
+* rows and columns INFO+1 through IHI.
+*
+* If INFO .GT. 0 and WANTZ is .TRUE., then on exit
+* (final value of Z) = (initial value of Z)*U
+* where U is the orthogonal matrix in (*)
+* (regardless of the value of WANTT.)
+*
+* Further Details
+* ===============
+*
+* 02-96 Based on modifications by
+* David Day, Sandia National Laboratory, USA
+*
+* 12-04 Further modifications by
+* Ralph Byers, University of Kansas, USA
+*
+* This is a modified version of ZLAHQR from LAPACK version 3.0.
+* It is (1) more robust against overflow and underflow and
+* (2) adopts the more conservative Ahues & Tisseur stopping
+* criterion (LAWN 122, 1997).
+*
+* =========================================================
+*
+* .. Parameters ..
+ INTEGER ITMAX
+ PARAMETER ( ITMAX = 30 )
+ COMPLEX*16 ZERO, ONE
+ PARAMETER ( ZERO = ( 0.0d0, 0.0d0 ),
+ $ ONE = ( 1.0d0, 0.0d0 ) )
+ DOUBLE PRECISION RZERO, RONE, HALF
+ PARAMETER ( RZERO = 0.0d0, RONE = 1.0d0, HALF = 0.5d0 )
+ DOUBLE PRECISION DAT1
+ PARAMETER ( DAT1 = 3.0d0 / 4.0d0 )
+* ..
+* .. Local Scalars ..
+ COMPLEX*16 CDUM, H11, H11S, H22, SC, SUM, T, T1, TEMP, U,
+ $ V2, X, Y
+ DOUBLE PRECISION AA, AB, BA, BB, H10, H21, RTEMP, S, SAFMAX,
+ $ SAFMIN, SMLNUM, SX, T2, TST, ULP
+ INTEGER I, I1, I2, ITS, J, JHI, JLO, K, L, M, NH, NZ
+* ..
+* .. Local Arrays ..
+ COMPLEX*16 V( 2 )
+* ..
+* .. External Functions ..
+ COMPLEX*16 ZLADIV
+ DOUBLE PRECISION DLAMCH
+ EXTERNAL ZLADIV, DLAMCH
+* ..
+* .. External Subroutines ..
+ EXTERNAL DLABAD, ZCOPY, ZLARFG, ZSCAL
+* ..
+* .. Statement Functions ..
+ DOUBLE PRECISION CABS1
+* ..
+* .. Intrinsic Functions ..
+ INTRINSIC ABS, DBLE, DCONJG, DIMAG, MAX, MIN, SQRT
+* ..
+* .. Statement Function definitions ..
+ CABS1( CDUM ) = ABS( DBLE( CDUM ) ) + ABS( DIMAG( CDUM ) )
+* ..
+* .. Executable Statements ..
+*
+ INFO = 0
+*
+* Quick return if possible
+*
+ IF( N.EQ.0 )
+ $ RETURN
+ IF( ILO.EQ.IHI ) THEN
+ W( ILO ) = H( ILO, ILO )
+ RETURN
+ END IF
+*
+* ==== clear out the trash ====
+ DO 10 J = ILO, IHI - 3
+ H( J+2, J ) = ZERO
+ H( J+3, J ) = ZERO
+ 10 CONTINUE
+ IF( ILO.LE.IHI-2 )
+ $ H( IHI, IHI-2 ) = ZERO
+* ==== ensure that subdiagonal entries are real ====
+ DO 20 I = ILO + 1, IHI
+ IF( DIMAG( H( I, I-1 ) ).NE.RZERO ) THEN
+* ==== The following redundant normalization
+* . avoids problems with both gradual and
+* . sudden underflow in ABS(H(I,I-1)) ====
+ SC = H( I, I-1 ) / CABS1( H( I, I-1 ) )
+ SC = DCONJG( SC ) / ABS( SC )
+ H( I, I-1 ) = ABS( H( I, I-1 ) )
+ IF( WANTT ) THEN
+ JLO = 1
+ JHI = N
+ ELSE
+ JLO = ILO
+ JHI = IHI
+ END IF
+ CALL ZSCAL( JHI-I+1, SC, H( I, I ), LDH )
+ CALL ZSCAL( MIN( JHI, I+1 )-JLO+1, DCONJG( SC ),
+ $ H( JLO, I ), 1 )
+ IF( WANTZ )
+ $ CALL ZSCAL( IHIZ-ILOZ+1, DCONJG( SC ), Z( ILOZ, I ), 1 )
+ END IF
+ 20 CONTINUE
+*
+ NH = IHI - ILO + 1
+ NZ = IHIZ - ILOZ + 1
+*
+* Set machine-dependent constants for the stopping criterion.
+*
+ SAFMIN = DLAMCH( 'SAFE MINIMUM' )
+ SAFMAX = RONE / SAFMIN
+ CALL DLABAD( SAFMIN, SAFMAX )
+ ULP = DLAMCH( 'PRECISION' )
+ SMLNUM = SAFMIN*( DBLE( NH ) / ULP )
+*
+* I1 and I2 are the indices of the first row and last column of H
+* to which transformations must be applied. If eigenvalues only are
+* being computed, I1 and I2 are set inside the main loop.
+*
+ IF( WANTT ) THEN
+ I1 = 1
+ I2 = N
+ END IF
+*
+* The main loop begins here. I is the loop index and decreases from
+* IHI to ILO in steps of 1. Each iteration of the loop works
+* with the active submatrix in rows and columns L to I.
+* Eigenvalues I+1 to IHI have already converged. Either L = ILO, or
+* H(L,L-1) is negligible so that the matrix splits.
+*
+ I = IHI
+ 30 CONTINUE
+ IF( I.LT.ILO )
+ $ GO TO 150
+*
+* Perform QR iterations on rows and columns ILO to I until a
+* submatrix of order 1 splits off at the bottom because a
+* subdiagonal element has become negligible.
+*
+ L = ILO
+ DO 130 ITS = 0, ITMAX
+*
+* Look for a single small subdiagonal element.
+*
+ DO 40 K = I, L + 1, -1
+ IF( CABS1( H( K, K-1 ) ).LE.SMLNUM )
+ $ GO TO 50
+ TST = CABS1( H( K-1, K-1 ) ) + CABS1( H( K, K ) )
+ IF( TST.EQ.ZERO ) THEN
+ IF( K-2.GE.ILO )
+ $ TST = TST + ABS( DBLE( H( K-1, K-2 ) ) )
+ IF( K+1.LE.IHI )
+ $ TST = TST + ABS( DBLE( H( K+1, K ) ) )
+ END IF
+* ==== The following is a conservative small subdiagonal
+* . deflation criterion due to Ahues & Tisseur (LAWN 122,
+* . 1997). It has better mathematical foundation and
+* . improves accuracy in some examples. ====
+ IF( ABS( DBLE( H( K, K-1 ) ) ).LE.ULP*TST ) THEN
+ AB = MAX( CABS1( H( K, K-1 ) ), CABS1( H( K-1, K ) ) )
+ BA = MIN( CABS1( H( K, K-1 ) ), CABS1( H( K-1, K ) ) )
+ AA = MAX( CABS1( H( K, K ) ),
+ $ CABS1( H( K-1, K-1 )-H( K, K ) ) )
+ BB = MIN( CABS1( H( K, K ) ),
+ $ CABS1( H( K-1, K-1 )-H( K, K ) ) )
+ S = AA + AB
+ IF( BA*( AB / S ).LE.MAX( SMLNUM,
+ $ ULP*( BB*( AA / S ) ) ) )GO TO 50
+ END IF
+ 40 CONTINUE
+ 50 CONTINUE
+ L = K
+ IF( L.GT.ILO ) THEN
+*
+* H(L,L-1) is negligible
+*
+ H( L, L-1 ) = ZERO
+ END IF
+*
+* Exit from loop if a submatrix of order 1 has split off.
+*
+ IF( L.GE.I )
+ $ GO TO 140
+*
+* Now the active submatrix is in rows and columns L to I. If
+* eigenvalues only are being computed, only the active submatrix
+* need be transformed.
+*
+ IF( .NOT.WANTT ) THEN
+ I1 = L
+ I2 = I
+ END IF
+*
+ IF( ITS.EQ.10 .OR. ITS.EQ.20 ) THEN
+*
+* Exceptional shift.
+*
+ S = DAT1*ABS( DBLE( H( I, I-1 ) ) )
+ T = S + H( I, I )
+ ELSE
+*
+* Wilkinson's shift.
+*
+ T = H( I, I )
+ U = SQRT( H( I-1, I ) )*SQRT( H( I, I-1 ) )
+ S = CABS1( U )
+ IF( S.NE.RZERO ) THEN
+ X = HALF*( H( I-1, I-1 )-T )
+ SX = CABS1( X )
+ S = MAX( S, CABS1( X ) )
+ Y = S*SQRT( ( X / S )**2+( U / S )**2 )
+ IF( SX.GT.RZERO ) THEN
+ IF( DBLE( X / SX )*DBLE( Y )+DIMAG( X / SX )*
+ $ DIMAG( Y ).LT.RZERO )Y = -Y
+ END IF
+ T = T - U*ZLADIV( U, ( X+Y ) )
+ END IF
+ END IF
+*
+* Look for two consecutive small subdiagonal elements.
+*
+ DO 60 M = I - 1, L + 1, -1
+*
+* Determine the effect of starting the single-shift QR
+* iteration at row M, and see if this would make H(M,M-1)
+* negligible.
+*
+ H11 = H( M, M )
+ H22 = H( M+1, M+1 )
+ H11S = H11 - T
+ H21 = H( M+1, M )
+ S = CABS1( H11S ) + ABS( H21 )
+ H11S = H11S / S
+ H21 = H21 / S
+ V( 1 ) = H11S
+ V( 2 ) = H21
+ H10 = H( M, M-1 )
+ IF( ABS( H10 )*ABS( H21 ).LE.ULP*
+ $ ( CABS1( H11S )*( CABS1( H11 )+CABS1( H22 ) ) ) )
+ $ GO TO 70
+ 60 CONTINUE
+ H11 = H( L, L )
+ H22 = H( L+1, L+1 )
+ H11S = H11 - T
+ H21 = H( L+1, L )
+ S = CABS1( H11S ) + ABS( H21 )
+ H11S = H11S / S
+ H21 = H21 / S
+ V( 1 ) = H11S
+ V( 2 ) = H21
+ 70 CONTINUE
+*
+* Single-shift QR step
+*
+ DO 120 K = M, I - 1
+*
+* The first iteration of this loop determines a reflection G
+* from the vector V and applies it from left and right to H,
+* thus creating a nonzero bulge below the subdiagonal.
+*
+* Each subsequent iteration determines a reflection G to
+* restore the Hessenberg form in the (K-1)th column, and thus
+* chases the bulge one step toward the bottom of the active
+* submatrix.
+*
+* V(2) is always real before the call to ZLARFG, and hence
+* after the call T2 ( = T1*V(2) ) is also real.
+*
+ IF( K.GT.M )
+ $ CALL ZCOPY( 2, H( K, K-1 ), 1, V, 1 )
+ CALL ZLARFG( 2, V( 1 ), V( 2 ), 1, T1 )
+ IF( K.GT.M ) THEN
+ H( K, K-1 ) = V( 1 )
+ H( K+1, K-1 ) = ZERO
+ END IF
+ V2 = V( 2 )
+ T2 = DBLE( T1*V2 )
+*
+* Apply G from the left to transform the rows of the matrix
+* in columns K to I2.
+*
+ DO 80 J = K, I2
+ SUM = DCONJG( T1 )*H( K, J ) + T2*H( K+1, J )
+ H( K, J ) = H( K, J ) - SUM
+ H( K+1, J ) = H( K+1, J ) - SUM*V2
+ 80 CONTINUE
+*
+* Apply G from the right to transform the columns of the
+* matrix in rows I1 to min(K+2,I).
+*
+ DO 90 J = I1, MIN( K+2, I )
+ SUM = T1*H( J, K ) + T2*H( J, K+1 )
+ H( J, K ) = H( J, K ) - SUM
+ H( J, K+1 ) = H( J, K+1 ) - SUM*DCONJG( V2 )
+ 90 CONTINUE
+*
+ IF( WANTZ ) THEN
+*
+* Accumulate transformations in the matrix Z
+*
+ DO 100 J = ILOZ, IHIZ
+ SUM = T1*Z( J, K ) + T2*Z( J, K+1 )
+ Z( J, K ) = Z( J, K ) - SUM
+ Z( J, K+1 ) = Z( J, K+1 ) - SUM*DCONJG( V2 )
+ 100 CONTINUE
+ END IF
+*
+ IF( K.EQ.M .AND. M.GT.L ) THEN
+*
+* If the QR step was started at row M > L because two
+* consecutive small subdiagonals were found, then extra
+* scaling must be performed to ensure that H(M,M-1) remains
+* real.
+*
+ TEMP = ONE - T1
+ TEMP = TEMP / ABS( TEMP )
+ H( M+1, M ) = H( M+1, M )*DCONJG( TEMP )
+ IF( M+2.LE.I )
+ $ H( M+2, M+1 ) = H( M+2, M+1 )*TEMP
+ DO 110 J = M, I
+ IF( J.NE.M+1 ) THEN
+ IF( I2.GT.J )
+ $ CALL ZSCAL( I2-J, TEMP, H( J, J+1 ), LDH )
+ CALL ZSCAL( J-I1, DCONJG( TEMP ), H( I1, J ), 1 )
+ IF( WANTZ ) THEN
+ CALL ZSCAL( NZ, DCONJG( TEMP ), Z( ILOZ, J ),
+ $ 1 )
+ END IF
+ END IF
+ 110 CONTINUE
+ END IF
+ 120 CONTINUE
+*
+* Ensure that H(I,I-1) is real.
+*
+ TEMP = H( I, I-1 )
+ IF( DIMAG( TEMP ).NE.RZERO ) THEN
+ RTEMP = ABS( TEMP )
+ H( I, I-1 ) = RTEMP
+ TEMP = TEMP / RTEMP
+ IF( I2.GT.I )
+ $ CALL ZSCAL( I2-I, DCONJG( TEMP ), H( I, I+1 ), LDH )
+ CALL ZSCAL( I-I1, TEMP, H( I1, I ), 1 )
+ IF( WANTZ ) THEN
+ CALL ZSCAL( NZ, TEMP, Z( ILOZ, I ), 1 )
+ END IF
+ END IF
+*
+ 130 CONTINUE
+*
+* Failure to converge in remaining number of iterations
+*
+ INFO = I
+ RETURN
+*
+ 140 CONTINUE
+*
+* H(I,I-1) is negligible: one eigenvalue has converged.
+*
+ W( I ) = H( I, I )
+*
+* return to start of the main loop with new value of I.
+*
+ I = L - 1
+ GO TO 30
+*
+ 150 CONTINUE
+ RETURN
+*
+* End of ZLAHQR
+*
+ END