summaryrefslogtreecommitdiff
path: root/2.3-1/src/fortran/lapack/zggbak.f
diff options
context:
space:
mode:
Diffstat (limited to '2.3-1/src/fortran/lapack/zggbak.f')
-rw-r--r--2.3-1/src/fortran/lapack/zggbak.f220
1 files changed, 220 insertions, 0 deletions
diff --git a/2.3-1/src/fortran/lapack/zggbak.f b/2.3-1/src/fortran/lapack/zggbak.f
new file mode 100644
index 00000000..ad6dd032
--- /dev/null
+++ b/2.3-1/src/fortran/lapack/zggbak.f
@@ -0,0 +1,220 @@
+ SUBROUTINE ZGGBAK( JOB, SIDE, N, ILO, IHI, LSCALE, RSCALE, M, V,
+ $ LDV, INFO )
+*
+* -- LAPACK routine (version 3.1) --
+* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd..
+* November 2006
+*
+* .. Scalar Arguments ..
+ CHARACTER JOB, SIDE
+ INTEGER IHI, ILO, INFO, LDV, M, N
+* ..
+* .. Array Arguments ..
+ DOUBLE PRECISION LSCALE( * ), RSCALE( * )
+ COMPLEX*16 V( LDV, * )
+* ..
+*
+* Purpose
+* =======
+*
+* ZGGBAK forms the right or left eigenvectors of a complex generalized
+* eigenvalue problem A*x = lambda*B*x, by backward transformation on
+* the computed eigenvectors of the balanced pair of matrices output by
+* ZGGBAL.
+*
+* Arguments
+* =========
+*
+* JOB (input) CHARACTER*1
+* Specifies the type of backward transformation required:
+* = 'N': do nothing, return immediately;
+* = 'P': do backward transformation for permutation only;
+* = 'S': do backward transformation for scaling only;
+* = 'B': do backward transformations for both permutation and
+* scaling.
+* JOB must be the same as the argument JOB supplied to ZGGBAL.
+*
+* SIDE (input) CHARACTER*1
+* = 'R': V contains right eigenvectors;
+* = 'L': V contains left eigenvectors.
+*
+* N (input) INTEGER
+* The number of rows of the matrix V. N >= 0.
+*
+* ILO (input) INTEGER
+* IHI (input) INTEGER
+* The integers ILO and IHI determined by ZGGBAL.
+* 1 <= ILO <= IHI <= N, if N > 0; ILO=1 and IHI=0, if N=0.
+*
+* LSCALE (input) DOUBLE PRECISION array, dimension (N)
+* Details of the permutations and/or scaling factors applied
+* to the left side of A and B, as returned by ZGGBAL.
+*
+* RSCALE (input) DOUBLE PRECISION array, dimension (N)
+* Details of the permutations and/or scaling factors applied
+* to the right side of A and B, as returned by ZGGBAL.
+*
+* M (input) INTEGER
+* The number of columns of the matrix V. M >= 0.
+*
+* V (input/output) COMPLEX*16 array, dimension (LDV,M)
+* On entry, the matrix of right or left eigenvectors to be
+* transformed, as returned by ZTGEVC.
+* On exit, V is overwritten by the transformed eigenvectors.
+*
+* LDV (input) INTEGER
+* The leading dimension of the matrix V. LDV >= max(1,N).
+*
+* INFO (output) INTEGER
+* = 0: successful exit.
+* < 0: if INFO = -i, the i-th argument had an illegal value.
+*
+* Further Details
+* ===============
+*
+* See R.C. Ward, Balancing the generalized eigenvalue problem,
+* SIAM J. Sci. Stat. Comp. 2 (1981), 141-152.
+*
+* =====================================================================
+*
+* .. Local Scalars ..
+ LOGICAL LEFTV, RIGHTV
+ INTEGER I, K
+* ..
+* .. External Functions ..
+ LOGICAL LSAME
+ EXTERNAL LSAME
+* ..
+* .. External Subroutines ..
+ EXTERNAL XERBLA, ZDSCAL, ZSWAP
+* ..
+* .. Intrinsic Functions ..
+ INTRINSIC MAX
+* ..
+* .. Executable Statements ..
+*
+* Test the input parameters
+*
+ RIGHTV = LSAME( SIDE, 'R' )
+ LEFTV = LSAME( SIDE, 'L' )
+*
+ INFO = 0
+ IF( .NOT.LSAME( JOB, 'N' ) .AND. .NOT.LSAME( JOB, 'P' ) .AND.
+ $ .NOT.LSAME( JOB, 'S' ) .AND. .NOT.LSAME( JOB, 'B' ) ) THEN
+ INFO = -1
+ ELSE IF( .NOT.RIGHTV .AND. .NOT.LEFTV ) THEN
+ INFO = -2
+ ELSE IF( N.LT.0 ) THEN
+ INFO = -3
+ ELSE IF( ILO.LT.1 ) THEN
+ INFO = -4
+ ELSE IF( N.EQ.0 .AND. IHI.EQ.0 .AND. ILO.NE.1 ) THEN
+ INFO = -4
+ ELSE IF( N.GT.0 .AND. ( IHI.LT.ILO .OR. IHI.GT.MAX( 1, N ) ) )
+ $ THEN
+ INFO = -5
+ ELSE IF( N.EQ.0 .AND. ILO.EQ.1 .AND. IHI.NE.0 ) THEN
+ INFO = -5
+ ELSE IF( M.LT.0 ) THEN
+ INFO = -8
+ ELSE IF( LDV.LT.MAX( 1, N ) ) THEN
+ INFO = -10
+ END IF
+ IF( INFO.NE.0 ) THEN
+ CALL XERBLA( 'ZGGBAK', -INFO )
+ RETURN
+ END IF
+*
+* Quick return if possible
+*
+ IF( N.EQ.0 )
+ $ RETURN
+ IF( M.EQ.0 )
+ $ RETURN
+ IF( LSAME( JOB, 'N' ) )
+ $ RETURN
+*
+ IF( ILO.EQ.IHI )
+ $ GO TO 30
+*
+* Backward balance
+*
+ IF( LSAME( JOB, 'S' ) .OR. LSAME( JOB, 'B' ) ) THEN
+*
+* Backward transformation on right eigenvectors
+*
+ IF( RIGHTV ) THEN
+ DO 10 I = ILO, IHI
+ CALL ZDSCAL( M, RSCALE( I ), V( I, 1 ), LDV )
+ 10 CONTINUE
+ END IF
+*
+* Backward transformation on left eigenvectors
+*
+ IF( LEFTV ) THEN
+ DO 20 I = ILO, IHI
+ CALL ZDSCAL( M, LSCALE( I ), V( I, 1 ), LDV )
+ 20 CONTINUE
+ END IF
+ END IF
+*
+* Backward permutation
+*
+ 30 CONTINUE
+ IF( LSAME( JOB, 'P' ) .OR. LSAME( JOB, 'B' ) ) THEN
+*
+* Backward permutation on right eigenvectors
+*
+ IF( RIGHTV ) THEN
+ IF( ILO.EQ.1 )
+ $ GO TO 50
+ DO 40 I = ILO - 1, 1, -1
+ K = RSCALE( I )
+ IF( K.EQ.I )
+ $ GO TO 40
+ CALL ZSWAP( M, V( I, 1 ), LDV, V( K, 1 ), LDV )
+ 40 CONTINUE
+*
+ 50 CONTINUE
+ IF( IHI.EQ.N )
+ $ GO TO 70
+ DO 60 I = IHI + 1, N
+ K = RSCALE( I )
+ IF( K.EQ.I )
+ $ GO TO 60
+ CALL ZSWAP( M, V( I, 1 ), LDV, V( K, 1 ), LDV )
+ 60 CONTINUE
+ END IF
+*
+* Backward permutation on left eigenvectors
+*
+ 70 CONTINUE
+ IF( LEFTV ) THEN
+ IF( ILO.EQ.1 )
+ $ GO TO 90
+ DO 80 I = ILO - 1, 1, -1
+ K = LSCALE( I )
+ IF( K.EQ.I )
+ $ GO TO 80
+ CALL ZSWAP( M, V( I, 1 ), LDV, V( K, 1 ), LDV )
+ 80 CONTINUE
+*
+ 90 CONTINUE
+ IF( IHI.EQ.N )
+ $ GO TO 110
+ DO 100 I = IHI + 1, N
+ K = LSCALE( I )
+ IF( K.EQ.I )
+ $ GO TO 100
+ CALL ZSWAP( M, V( I, 1 ), LDV, V( K, 1 ), LDV )
+ 100 CONTINUE
+ END IF
+ END IF
+*
+ 110 CONTINUE
+*
+ RETURN
+*
+* End of ZGGBAK
+*
+ END