summaryrefslogtreecommitdiff
path: root/2.3-1/src/fortran/lapack/zgetf2.f
diff options
context:
space:
mode:
Diffstat (limited to '2.3-1/src/fortran/lapack/zgetf2.f')
-rw-r--r--2.3-1/src/fortran/lapack/zgetf2.f148
1 files changed, 148 insertions, 0 deletions
diff --git a/2.3-1/src/fortran/lapack/zgetf2.f b/2.3-1/src/fortran/lapack/zgetf2.f
new file mode 100644
index 00000000..a2dc1834
--- /dev/null
+++ b/2.3-1/src/fortran/lapack/zgetf2.f
@@ -0,0 +1,148 @@
+ SUBROUTINE ZGETF2( M, N, A, LDA, IPIV, INFO )
+*
+* -- LAPACK routine (version 3.1) --
+* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd..
+* November 2006
+*
+* .. Scalar Arguments ..
+ INTEGER INFO, LDA, M, N
+* ..
+* .. Array Arguments ..
+ INTEGER IPIV( * )
+ COMPLEX*16 A( LDA, * )
+* ..
+*
+* Purpose
+* =======
+*
+* ZGETF2 computes an LU factorization of a general m-by-n matrix A
+* using partial pivoting with row interchanges.
+*
+* The factorization has the form
+* A = P * L * U
+* where P is a permutation matrix, L is lower triangular with unit
+* diagonal elements (lower trapezoidal if m > n), and U is upper
+* triangular (upper trapezoidal if m < n).
+*
+* This is the right-looking Level 2 BLAS version of the algorithm.
+*
+* Arguments
+* =========
+*
+* M (input) INTEGER
+* The number of rows of the matrix A. M >= 0.
+*
+* N (input) INTEGER
+* The number of columns of the matrix A. N >= 0.
+*
+* A (input/output) COMPLEX*16 array, dimension (LDA,N)
+* On entry, the m by n matrix to be factored.
+* On exit, the factors L and U from the factorization
+* A = P*L*U; the unit diagonal elements of L are not stored.
+*
+* LDA (input) INTEGER
+* The leading dimension of the array A. LDA >= max(1,M).
+*
+* IPIV (output) INTEGER array, dimension (min(M,N))
+* The pivot indices; for 1 <= i <= min(M,N), row i of the
+* matrix was interchanged with row IPIV(i).
+*
+* INFO (output) INTEGER
+* = 0: successful exit
+* < 0: if INFO = -k, the k-th argument had an illegal value
+* > 0: if INFO = k, U(k,k) is exactly zero. The factorization
+* has been completed, but the factor U is exactly
+* singular, and division by zero will occur if it is used
+* to solve a system of equations.
+*
+* =====================================================================
+*
+* .. Parameters ..
+ COMPLEX*16 ONE, ZERO
+ PARAMETER ( ONE = ( 1.0D+0, 0.0D+0 ),
+ $ ZERO = ( 0.0D+0, 0.0D+0 ) )
+* ..
+* .. Local Scalars ..
+ DOUBLE PRECISION SFMIN
+ INTEGER I, J, JP
+* ..
+* .. External Functions ..
+ DOUBLE PRECISION DLAMCH
+ INTEGER IZAMAX
+ EXTERNAL DLAMCH, IZAMAX
+* ..
+* .. External Subroutines ..
+ EXTERNAL XERBLA, ZGERU, ZSCAL, ZSWAP
+* ..
+* .. Intrinsic Functions ..
+ INTRINSIC MAX, MIN
+* ..
+* .. Executable Statements ..
+*
+* Test the input parameters.
+*
+ INFO = 0
+ IF( M.LT.0 ) THEN
+ INFO = -1
+ ELSE IF( N.LT.0 ) THEN
+ INFO = -2
+ ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
+ INFO = -4
+ END IF
+ IF( INFO.NE.0 ) THEN
+ CALL XERBLA( 'ZGETF2', -INFO )
+ RETURN
+ END IF
+*
+* Quick return if possible
+*
+ IF( M.EQ.0 .OR. N.EQ.0 )
+ $ RETURN
+*
+* Compute machine safe minimum
+*
+ SFMIN = DLAMCH('S')
+*
+ DO 10 J = 1, MIN( M, N )
+*
+* Find pivot and test for singularity.
+*
+ JP = J - 1 + IZAMAX( M-J+1, A( J, J ), 1 )
+ IPIV( J ) = JP
+ IF( A( JP, J ).NE.ZERO ) THEN
+*
+* Apply the interchange to columns 1:N.
+*
+ IF( JP.NE.J )
+ $ CALL ZSWAP( N, A( J, 1 ), LDA, A( JP, 1 ), LDA )
+*
+* Compute elements J+1:M of J-th column.
+*
+ IF( J.LT.M ) THEN
+ IF( ABS(A( J, J )) .GE. SFMIN ) THEN
+ CALL ZSCAL( M-J, ONE / A( J, J ), A( J+1, J ), 1 )
+ ELSE
+ DO 20 I = 1, M-J
+ A( J+I, J ) = A( J+I, J ) / A( J, J )
+ 20 CONTINUE
+ END IF
+ END IF
+*
+ ELSE IF( INFO.EQ.0 ) THEN
+*
+ INFO = J
+ END IF
+*
+ IF( J.LT.MIN( M, N ) ) THEN
+*
+* Update trailing submatrix.
+*
+ CALL ZGERU( M-J, N-J, -ONE, A( J+1, J ), 1, A( J, J+1 ),
+ $ LDA, A( J+1, J+1 ), LDA )
+ END IF
+ 10 CONTINUE
+ RETURN
+*
+* End of ZGETF2
+*
+ END