diff options
Diffstat (limited to '2.3-1/src/fortran/lapack/zgetc2.f')
-rw-r--r-- | 2.3-1/src/fortran/lapack/zgetc2.f | 145 |
1 files changed, 145 insertions, 0 deletions
diff --git a/2.3-1/src/fortran/lapack/zgetc2.f b/2.3-1/src/fortran/lapack/zgetc2.f new file mode 100644 index 00000000..35ac376c --- /dev/null +++ b/2.3-1/src/fortran/lapack/zgetc2.f @@ -0,0 +1,145 @@ + SUBROUTINE ZGETC2( N, A, LDA, IPIV, JPIV, INFO ) +* +* -- LAPACK auxiliary routine (version 3.1) -- +* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. +* November 2006 +* +* .. Scalar Arguments .. + INTEGER INFO, LDA, N +* .. +* .. Array Arguments .. + INTEGER IPIV( * ), JPIV( * ) + COMPLEX*16 A( LDA, * ) +* .. +* +* Purpose +* ======= +* +* ZGETC2 computes an LU factorization, using complete pivoting, of the +* n-by-n matrix A. The factorization has the form A = P * L * U * Q, +* where P and Q are permutation matrices, L is lower triangular with +* unit diagonal elements and U is upper triangular. +* +* This is a level 1 BLAS version of the algorithm. +* +* Arguments +* ========= +* +* N (input) INTEGER +* The order of the matrix A. N >= 0. +* +* A (input/output) COMPLEX*16 array, dimension (LDA, N) +* On entry, the n-by-n matrix to be factored. +* On exit, the factors L and U from the factorization +* A = P*L*U*Q; the unit diagonal elements of L are not stored. +* If U(k, k) appears to be less than SMIN, U(k, k) is given the +* value of SMIN, giving a nonsingular perturbed system. +* +* LDA (input) INTEGER +* The leading dimension of the array A. LDA >= max(1, N). +* +* IPIV (output) INTEGER array, dimension (N). +* The pivot indices; for 1 <= i <= N, row i of the +* matrix has been interchanged with row IPIV(i). +* +* JPIV (output) INTEGER array, dimension (N). +* The pivot indices; for 1 <= j <= N, column j of the +* matrix has been interchanged with column JPIV(j). +* +* INFO (output) INTEGER +* = 0: successful exit +* > 0: if INFO = k, U(k, k) is likely to produce overflow if +* one tries to solve for x in Ax = b. So U is perturbed +* to avoid the overflow. +* +* Further Details +* =============== +* +* Based on contributions by +* Bo Kagstrom and Peter Poromaa, Department of Computing Science, +* Umea University, S-901 87 Umea, Sweden. +* +* ===================================================================== +* +* .. Parameters .. + DOUBLE PRECISION ZERO, ONE + PARAMETER ( ZERO = 0.0D+0, ONE = 1.0D+0 ) +* .. +* .. Local Scalars .. + INTEGER I, IP, IPV, J, JP, JPV + DOUBLE PRECISION BIGNUM, EPS, SMIN, SMLNUM, XMAX +* .. +* .. External Subroutines .. + EXTERNAL ZGERU, ZSWAP +* .. +* .. External Functions .. + DOUBLE PRECISION DLAMCH + EXTERNAL DLAMCH +* .. +* .. Intrinsic Functions .. + INTRINSIC ABS, DCMPLX, MAX +* .. +* .. Executable Statements .. +* +* Set constants to control overflow +* + INFO = 0 + EPS = DLAMCH( 'P' ) + SMLNUM = DLAMCH( 'S' ) / EPS + BIGNUM = ONE / SMLNUM + CALL DLABAD( SMLNUM, BIGNUM ) +* +* Factorize A using complete pivoting. +* Set pivots less than SMIN to SMIN +* + DO 40 I = 1, N - 1 +* +* Find max element in matrix A +* + XMAX = ZERO + DO 20 IP = I, N + DO 10 JP = I, N + IF( ABS( A( IP, JP ) ).GE.XMAX ) THEN + XMAX = ABS( A( IP, JP ) ) + IPV = IP + JPV = JP + END IF + 10 CONTINUE + 20 CONTINUE + IF( I.EQ.1 ) + $ SMIN = MAX( EPS*XMAX, SMLNUM ) +* +* Swap rows +* + IF( IPV.NE.I ) + $ CALL ZSWAP( N, A( IPV, 1 ), LDA, A( I, 1 ), LDA ) + IPIV( I ) = IPV +* +* Swap columns +* + IF( JPV.NE.I ) + $ CALL ZSWAP( N, A( 1, JPV ), 1, A( 1, I ), 1 ) + JPIV( I ) = JPV +* +* Check for singularity +* + IF( ABS( A( I, I ) ).LT.SMIN ) THEN + INFO = I + A( I, I ) = DCMPLX( SMIN, ZERO ) + END IF + DO 30 J = I + 1, N + A( J, I ) = A( J, I ) / A( I, I ) + 30 CONTINUE + CALL ZGERU( N-I, N-I, -DCMPLX( ONE ), A( I+1, I ), 1, + $ A( I, I+1 ), LDA, A( I+1, I+1 ), LDA ) + 40 CONTINUE +* + IF( ABS( A( N, N ) ).LT.SMIN ) THEN + INFO = N + A( N, N ) = DCMPLX( SMIN, ZERO ) + END IF + RETURN +* +* End of ZGETC2 +* + END |