diff options
Diffstat (limited to '2.3-1/src/fortran/lapack/zgelsy.f')
-rw-r--r-- | 2.3-1/src/fortran/lapack/zgelsy.f | 385 |
1 files changed, 385 insertions, 0 deletions
diff --git a/2.3-1/src/fortran/lapack/zgelsy.f b/2.3-1/src/fortran/lapack/zgelsy.f new file mode 100644 index 00000000..95aece58 --- /dev/null +++ b/2.3-1/src/fortran/lapack/zgelsy.f @@ -0,0 +1,385 @@ + SUBROUTINE ZGELSY( M, N, NRHS, A, LDA, B, LDB, JPVT, RCOND, RANK, + $ WORK, LWORK, RWORK, INFO ) +* +* -- LAPACK driver routine (version 3.1) -- +* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. +* November 2006 +* +* .. Scalar Arguments .. + INTEGER INFO, LDA, LDB, LWORK, M, N, NRHS, RANK + DOUBLE PRECISION RCOND +* .. +* .. Array Arguments .. + INTEGER JPVT( * ) + DOUBLE PRECISION RWORK( * ) + COMPLEX*16 A( LDA, * ), B( LDB, * ), WORK( * ) +* .. +* +* Purpose +* ======= +* +* ZGELSY computes the minimum-norm solution to a complex linear least +* squares problem: +* minimize || A * X - B || +* using a complete orthogonal factorization of A. A is an M-by-N +* matrix which may be rank-deficient. +* +* Several right hand side vectors b and solution vectors x can be +* handled in a single call; they are stored as the columns of the +* M-by-NRHS right hand side matrix B and the N-by-NRHS solution +* matrix X. +* +* The routine first computes a QR factorization with column pivoting: +* A * P = Q * [ R11 R12 ] +* [ 0 R22 ] +* with R11 defined as the largest leading submatrix whose estimated +* condition number is less than 1/RCOND. The order of R11, RANK, +* is the effective rank of A. +* +* Then, R22 is considered to be negligible, and R12 is annihilated +* by unitary transformations from the right, arriving at the +* complete orthogonal factorization: +* A * P = Q * [ T11 0 ] * Z +* [ 0 0 ] +* The minimum-norm solution is then +* X = P * Z' [ inv(T11)*Q1'*B ] +* [ 0 ] +* where Q1 consists of the first RANK columns of Q. +* +* This routine is basically identical to the original xGELSX except +* three differences: +* o The permutation of matrix B (the right hand side) is faster and +* more simple. +* o The call to the subroutine xGEQPF has been substituted by the +* the call to the subroutine xGEQP3. This subroutine is a Blas-3 +* version of the QR factorization with column pivoting. +* o Matrix B (the right hand side) is updated with Blas-3. +* +* Arguments +* ========= +* +* M (input) INTEGER +* The number of rows of the matrix A. M >= 0. +* +* N (input) INTEGER +* The number of columns of the matrix A. N >= 0. +* +* NRHS (input) INTEGER +* The number of right hand sides, i.e., the number of +* columns of matrices B and X. NRHS >= 0. +* +* A (input/output) COMPLEX*16 array, dimension (LDA,N) +* On entry, the M-by-N matrix A. +* On exit, A has been overwritten by details of its +* complete orthogonal factorization. +* +* LDA (input) INTEGER +* The leading dimension of the array A. LDA >= max(1,M). +* +* B (input/output) COMPLEX*16 array, dimension (LDB,NRHS) +* On entry, the M-by-NRHS right hand side matrix B. +* On exit, the N-by-NRHS solution matrix X. +* +* LDB (input) INTEGER +* The leading dimension of the array B. LDB >= max(1,M,N). +* +* JPVT (input/output) INTEGER array, dimension (N) +* On entry, if JPVT(i) .ne. 0, the i-th column of A is permuted +* to the front of AP, otherwise column i is a free column. +* On exit, if JPVT(i) = k, then the i-th column of A*P +* was the k-th column of A. +* +* RCOND (input) DOUBLE PRECISION +* RCOND is used to determine the effective rank of A, which +* is defined as the order of the largest leading triangular +* submatrix R11 in the QR factorization with pivoting of A, +* whose estimated condition number < 1/RCOND. +* +* RANK (output) INTEGER +* The effective rank of A, i.e., the order of the submatrix +* R11. This is the same as the order of the submatrix T11 +* in the complete orthogonal factorization of A. +* +* WORK (workspace/output) COMPLEX*16 array, dimension (MAX(1,LWORK)) +* On exit, if INFO = 0, WORK(1) returns the optimal LWORK. +* +* LWORK (input) INTEGER +* The dimension of the array WORK. +* The unblocked strategy requires that: +* LWORK >= MN + MAX( 2*MN, N+1, MN+NRHS ) +* where MN = min(M,N). +* The block algorithm requires that: +* LWORK >= MN + MAX( 2*MN, NB*(N+1), MN+MN*NB, MN+NB*NRHS ) +* where NB is an upper bound on the blocksize returned +* by ILAENV for the routines ZGEQP3, ZTZRZF, CTZRQF, ZUNMQR, +* and ZUNMRZ. +* +* If LWORK = -1, then a workspace query is assumed; the routine +* only calculates the optimal size of the WORK array, returns +* this value as the first entry of the WORK array, and no error +* message related to LWORK is issued by XERBLA. +* +* RWORK (workspace) DOUBLE PRECISION array, dimension (2*N) +* +* INFO (output) INTEGER +* = 0: successful exit +* < 0: if INFO = -i, the i-th argument had an illegal value +* +* Further Details +* =============== +* +* Based on contributions by +* A. Petitet, Computer Science Dept., Univ. of Tenn., Knoxville, USA +* E. Quintana-Orti, Depto. de Informatica, Universidad Jaime I, Spain +* G. Quintana-Orti, Depto. de Informatica, Universidad Jaime I, Spain +* +* ===================================================================== +* +* .. Parameters .. + INTEGER IMAX, IMIN + PARAMETER ( IMAX = 1, IMIN = 2 ) + DOUBLE PRECISION ZERO, ONE + PARAMETER ( ZERO = 0.0D+0, ONE = 1.0D+0 ) + COMPLEX*16 CZERO, CONE + PARAMETER ( CZERO = ( 0.0D+0, 0.0D+0 ), + $ CONE = ( 1.0D+0, 0.0D+0 ) ) +* .. +* .. Local Scalars .. + LOGICAL LQUERY + INTEGER I, IASCL, IBSCL, ISMAX, ISMIN, J, LWKOPT, MN, + $ NB, NB1, NB2, NB3, NB4 + DOUBLE PRECISION ANRM, BIGNUM, BNRM, SMAX, SMAXPR, SMIN, SMINPR, + $ SMLNUM, WSIZE + COMPLEX*16 C1, C2, S1, S2 +* .. +* .. External Subroutines .. + EXTERNAL DLABAD, XERBLA, ZCOPY, ZGEQP3, ZLAIC1, ZLASCL, + $ ZLASET, ZTRSM, ZTZRZF, ZUNMQR, ZUNMRZ +* .. +* .. External Functions .. + INTEGER ILAENV + DOUBLE PRECISION DLAMCH, ZLANGE + EXTERNAL ILAENV, DLAMCH, ZLANGE +* .. +* .. Intrinsic Functions .. + INTRINSIC ABS, DBLE, DCMPLX, MAX, MIN +* .. +* .. Executable Statements .. +* + MN = MIN( M, N ) + ISMIN = MN + 1 + ISMAX = 2*MN + 1 +* +* Test the input arguments. +* + INFO = 0 + NB1 = ILAENV( 1, 'ZGEQRF', ' ', M, N, -1, -1 ) + NB2 = ILAENV( 1, 'ZGERQF', ' ', M, N, -1, -1 ) + NB3 = ILAENV( 1, 'ZUNMQR', ' ', M, N, NRHS, -1 ) + NB4 = ILAENV( 1, 'ZUNMRQ', ' ', M, N, NRHS, -1 ) + NB = MAX( NB1, NB2, NB3, NB4 ) + LWKOPT = MAX( 1, MN+2*N+NB*( N+1 ), 2*MN+NB*NRHS ) + WORK( 1 ) = DCMPLX( LWKOPT ) + LQUERY = ( LWORK.EQ.-1 ) + IF( M.LT.0 ) THEN + INFO = -1 + ELSE IF( N.LT.0 ) THEN + INFO = -2 + ELSE IF( NRHS.LT.0 ) THEN + INFO = -3 + ELSE IF( LDA.LT.MAX( 1, M ) ) THEN + INFO = -5 + ELSE IF( LDB.LT.MAX( 1, M, N ) ) THEN + INFO = -7 + ELSE IF( LWORK.LT.( MN+MAX( 2*MN, N+1, MN+NRHS ) ) .AND. .NOT. + $ LQUERY ) THEN + INFO = -12 + END IF +* + IF( INFO.NE.0 ) THEN + CALL XERBLA( 'ZGELSY', -INFO ) + RETURN + ELSE IF( LQUERY ) THEN + RETURN + END IF +* +* Quick return if possible +* + IF( MIN( M, N, NRHS ).EQ.0 ) THEN + RANK = 0 + RETURN + END IF +* +* Get machine parameters +* + SMLNUM = DLAMCH( 'S' ) / DLAMCH( 'P' ) + BIGNUM = ONE / SMLNUM + CALL DLABAD( SMLNUM, BIGNUM ) +* +* Scale A, B if max entries outside range [SMLNUM,BIGNUM] +* + ANRM = ZLANGE( 'M', M, N, A, LDA, RWORK ) + IASCL = 0 + IF( ANRM.GT.ZERO .AND. ANRM.LT.SMLNUM ) THEN +* +* Scale matrix norm up to SMLNUM +* + CALL ZLASCL( 'G', 0, 0, ANRM, SMLNUM, M, N, A, LDA, INFO ) + IASCL = 1 + ELSE IF( ANRM.GT.BIGNUM ) THEN +* +* Scale matrix norm down to BIGNUM +* + CALL ZLASCL( 'G', 0, 0, ANRM, BIGNUM, M, N, A, LDA, INFO ) + IASCL = 2 + ELSE IF( ANRM.EQ.ZERO ) THEN +* +* Matrix all zero. Return zero solution. +* + CALL ZLASET( 'F', MAX( M, N ), NRHS, CZERO, CZERO, B, LDB ) + RANK = 0 + GO TO 70 + END IF +* + BNRM = ZLANGE( 'M', M, NRHS, B, LDB, RWORK ) + IBSCL = 0 + IF( BNRM.GT.ZERO .AND. BNRM.LT.SMLNUM ) THEN +* +* Scale matrix norm up to SMLNUM +* + CALL ZLASCL( 'G', 0, 0, BNRM, SMLNUM, M, NRHS, B, LDB, INFO ) + IBSCL = 1 + ELSE IF( BNRM.GT.BIGNUM ) THEN +* +* Scale matrix norm down to BIGNUM +* + CALL ZLASCL( 'G', 0, 0, BNRM, BIGNUM, M, NRHS, B, LDB, INFO ) + IBSCL = 2 + END IF +* +* Compute QR factorization with column pivoting of A: +* A * P = Q * R +* + CALL ZGEQP3( M, N, A, LDA, JPVT, WORK( 1 ), WORK( MN+1 ), + $ LWORK-MN, RWORK, INFO ) + WSIZE = MN + DBLE( WORK( MN+1 ) ) +* +* complex workspace: MN+NB*(N+1). real workspace 2*N. +* Details of Householder rotations stored in WORK(1:MN). +* +* Determine RANK using incremental condition estimation +* + WORK( ISMIN ) = CONE + WORK( ISMAX ) = CONE + SMAX = ABS( A( 1, 1 ) ) + SMIN = SMAX + IF( ABS( A( 1, 1 ) ).EQ.ZERO ) THEN + RANK = 0 + CALL ZLASET( 'F', MAX( M, N ), NRHS, CZERO, CZERO, B, LDB ) + GO TO 70 + ELSE + RANK = 1 + END IF +* + 10 CONTINUE + IF( RANK.LT.MN ) THEN + I = RANK + 1 + CALL ZLAIC1( IMIN, RANK, WORK( ISMIN ), SMIN, A( 1, I ), + $ A( I, I ), SMINPR, S1, C1 ) + CALL ZLAIC1( IMAX, RANK, WORK( ISMAX ), SMAX, A( 1, I ), + $ A( I, I ), SMAXPR, S2, C2 ) +* + IF( SMAXPR*RCOND.LE.SMINPR ) THEN + DO 20 I = 1, RANK + WORK( ISMIN+I-1 ) = S1*WORK( ISMIN+I-1 ) + WORK( ISMAX+I-1 ) = S2*WORK( ISMAX+I-1 ) + 20 CONTINUE + WORK( ISMIN+RANK ) = C1 + WORK( ISMAX+RANK ) = C2 + SMIN = SMINPR + SMAX = SMAXPR + RANK = RANK + 1 + GO TO 10 + END IF + END IF +* +* complex workspace: 3*MN. +* +* Logically partition R = [ R11 R12 ] +* [ 0 R22 ] +* where R11 = R(1:RANK,1:RANK) +* +* [R11,R12] = [ T11, 0 ] * Y +* +c IF( RANK.LT.N ) +c $ CALL ZTZRZF( RANK, N, A, LDA, WORK( MN+1 ), WORK( 2*MN+1 ), +c $ LWORK-2*MN, INFO ) +* +* complex workspace: 2*MN. +* Details of Householder rotations stored in WORK(MN+1:2*MN) +* +* B(1:M,1:NRHS) := Q' * B(1:M,1:NRHS) +* + CALL ZUNMQR( 'Left', 'Conjugate transpose', M, NRHS, MN, A, LDA, + $ WORK( 1 ), B, LDB, WORK( 2*MN+1 ), LWORK-2*MN, INFO ) + WSIZE = MAX( WSIZE, 2*MN+DBLE( WORK( 2*MN+1 ) ) ) +* +* complex workspace: 2*MN+NB*NRHS. +* +* B(1:RANK,1:NRHS) := inv(T11) * B(1:RANK,1:NRHS) +* + CALL ZTRSM( 'Left', 'Upper', 'No transpose', 'Non-unit', RANK, + $ NRHS, CONE, A, LDA, B, LDB ) +* + DO 40 J = 1, NRHS + DO 30 I = RANK + 1, N + B( I, J ) = CZERO + 30 CONTINUE + 40 CONTINUE +* +* B(1:N,1:NRHS) := Y' * B(1:N,1:NRHS) +* +c IF( RANK.LT.N ) THEN +c CALL ZUNMRZ( 'Left', 'Conjugate transpose', N, NRHS, RANK, +c $ N-RANK, A, LDA, WORK( MN+1 ), B, LDB, +c $ WORK( 2*MN+1 ), LWORK-2*MN, INFO ) +c END IF +* +* complex workspace: 2*MN+NRHS. +* +* B(1:N,1:NRHS) := P * B(1:N,1:NRHS) +* + DO 60 J = 1, NRHS + DO 50 I = 1, N + WORK( JPVT( I ) ) = B( I, J ) + 50 CONTINUE + CALL ZCOPY( N, WORK( 1 ), 1, B( 1, J ), 1 ) + 60 CONTINUE +* +* complex workspace: N. +* +* Undo scaling +* + IF( IASCL.EQ.1 ) THEN + CALL ZLASCL( 'G', 0, 0, ANRM, SMLNUM, N, NRHS, B, LDB, INFO ) + CALL ZLASCL( 'U', 0, 0, SMLNUM, ANRM, RANK, RANK, A, LDA, + $ INFO ) + ELSE IF( IASCL.EQ.2 ) THEN + CALL ZLASCL( 'G', 0, 0, ANRM, BIGNUM, N, NRHS, B, LDB, INFO ) + CALL ZLASCL( 'U', 0, 0, BIGNUM, ANRM, RANK, RANK, A, LDA, + $ INFO ) + END IF + IF( IBSCL.EQ.1 ) THEN + CALL ZLASCL( 'G', 0, 0, SMLNUM, BNRM, N, NRHS, B, LDB, INFO ) + ELSE IF( IBSCL.EQ.2 ) THEN + CALL ZLASCL( 'G', 0, 0, BIGNUM, BNRM, N, NRHS, B, LDB, INFO ) + END IF +* + 70 CONTINUE + WORK( 1 ) = DCMPLX( LWKOPT ) +* + RETURN +* +* End of ZGELSY +* + END |