summaryrefslogtreecommitdiff
path: root/2.3-1/src/fortran/lapack/zgelq2.f
diff options
context:
space:
mode:
Diffstat (limited to '2.3-1/src/fortran/lapack/zgelq2.f')
-rw-r--r--2.3-1/src/fortran/lapack/zgelq2.f123
1 files changed, 123 insertions, 0 deletions
diff --git a/2.3-1/src/fortran/lapack/zgelq2.f b/2.3-1/src/fortran/lapack/zgelq2.f
new file mode 100644
index 00000000..dc387af0
--- /dev/null
+++ b/2.3-1/src/fortran/lapack/zgelq2.f
@@ -0,0 +1,123 @@
+ SUBROUTINE ZGELQ2( M, N, A, LDA, TAU, WORK, INFO )
+*
+* -- LAPACK routine (version 3.1) --
+* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd..
+* November 2006
+*
+* .. Scalar Arguments ..
+ INTEGER INFO, LDA, M, N
+* ..
+* .. Array Arguments ..
+ COMPLEX*16 A( LDA, * ), TAU( * ), WORK( * )
+* ..
+*
+* Purpose
+* =======
+*
+* ZGELQ2 computes an LQ factorization of a complex m by n matrix A:
+* A = L * Q.
+*
+* Arguments
+* =========
+*
+* M (input) INTEGER
+* The number of rows of the matrix A. M >= 0.
+*
+* N (input) INTEGER
+* The number of columns of the matrix A. N >= 0.
+*
+* A (input/output) COMPLEX*16 array, dimension (LDA,N)
+* On entry, the m by n matrix A.
+* On exit, the elements on and below the diagonal of the array
+* contain the m by min(m,n) lower trapezoidal matrix L (L is
+* lower triangular if m <= n); the elements above the diagonal,
+* with the array TAU, represent the unitary matrix Q as a
+* product of elementary reflectors (see Further Details).
+*
+* LDA (input) INTEGER
+* The leading dimension of the array A. LDA >= max(1,M).
+*
+* TAU (output) COMPLEX*16 array, dimension (min(M,N))
+* The scalar factors of the elementary reflectors (see Further
+* Details).
+*
+* WORK (workspace) COMPLEX*16 array, dimension (M)
+*
+* INFO (output) INTEGER
+* = 0: successful exit
+* < 0: if INFO = -i, the i-th argument had an illegal value
+*
+* Further Details
+* ===============
+*
+* The matrix Q is represented as a product of elementary reflectors
+*
+* Q = H(k)' . . . H(2)' H(1)', where k = min(m,n).
+*
+* Each H(i) has the form
+*
+* H(i) = I - tau * v * v'
+*
+* where tau is a complex scalar, and v is a complex vector with
+* v(1:i-1) = 0 and v(i) = 1; conjg(v(i+1:n)) is stored on exit in
+* A(i,i+1:n), and tau in TAU(i).
+*
+* =====================================================================
+*
+* .. Parameters ..
+ COMPLEX*16 ONE
+ PARAMETER ( ONE = ( 1.0D+0, 0.0D+0 ) )
+* ..
+* .. Local Scalars ..
+ INTEGER I, K
+ COMPLEX*16 ALPHA
+* ..
+* .. External Subroutines ..
+ EXTERNAL XERBLA, ZLACGV, ZLARF, ZLARFG
+* ..
+* .. Intrinsic Functions ..
+ INTRINSIC MAX, MIN
+* ..
+* .. Executable Statements ..
+*
+* Test the input arguments
+*
+ INFO = 0
+ IF( M.LT.0 ) THEN
+ INFO = -1
+ ELSE IF( N.LT.0 ) THEN
+ INFO = -2
+ ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
+ INFO = -4
+ END IF
+ IF( INFO.NE.0 ) THEN
+ CALL XERBLA( 'ZGELQ2', -INFO )
+ RETURN
+ END IF
+*
+ K = MIN( M, N )
+*
+ DO 10 I = 1, K
+*
+* Generate elementary reflector H(i) to annihilate A(i,i+1:n)
+*
+ CALL ZLACGV( N-I+1, A( I, I ), LDA )
+ ALPHA = A( I, I )
+ CALL ZLARFG( N-I+1, ALPHA, A( I, MIN( I+1, N ) ), LDA,
+ $ TAU( I ) )
+ IF( I.LT.M ) THEN
+*
+* Apply H(i) to A(i+1:m,i:n) from the right
+*
+ A( I, I ) = ONE
+ CALL ZLARF( 'Right', M-I, N-I+1, A( I, I ), LDA, TAU( I ),
+ $ A( I+1, I ), LDA, WORK )
+ END IF
+ A( I, I ) = ALPHA
+ CALL ZLACGV( N-I+1, A( I, I ), LDA )
+ 10 CONTINUE
+ RETURN
+*
+* End of ZGELQ2
+*
+ END