summaryrefslogtreecommitdiff
path: root/2.3-1/src/fortran/lapack/zgeev.f
diff options
context:
space:
mode:
Diffstat (limited to '2.3-1/src/fortran/lapack/zgeev.f')
-rw-r--r--2.3-1/src/fortran/lapack/zgeev.f396
1 files changed, 396 insertions, 0 deletions
diff --git a/2.3-1/src/fortran/lapack/zgeev.f b/2.3-1/src/fortran/lapack/zgeev.f
new file mode 100644
index 00000000..0fa66307
--- /dev/null
+++ b/2.3-1/src/fortran/lapack/zgeev.f
@@ -0,0 +1,396 @@
+ SUBROUTINE ZGEEV( JOBVL, JOBVR, N, A, LDA, W, VL, LDVL, VR, LDVR,
+ $ WORK, LWORK, RWORK, INFO )
+*
+* -- LAPACK driver routine (version 3.1) --
+* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd..
+* November 2006
+*
+* .. Scalar Arguments ..
+ CHARACTER JOBVL, JOBVR
+ INTEGER INFO, LDA, LDVL, LDVR, LWORK, N
+* ..
+* .. Array Arguments ..
+ DOUBLE PRECISION RWORK( * )
+ COMPLEX*16 A( LDA, * ), VL( LDVL, * ), VR( LDVR, * ),
+ $ W( * ), WORK( * )
+* ..
+*
+* Purpose
+* =======
+*
+* ZGEEV computes for an N-by-N complex nonsymmetric matrix A, the
+* eigenvalues and, optionally, the left and/or right eigenvectors.
+*
+* The right eigenvector v(j) of A satisfies
+* A * v(j) = lambda(j) * v(j)
+* where lambda(j) is its eigenvalue.
+* The left eigenvector u(j) of A satisfies
+* u(j)**H * A = lambda(j) * u(j)**H
+* where u(j)**H denotes the conjugate transpose of u(j).
+*
+* The computed eigenvectors are normalized to have Euclidean norm
+* equal to 1 and largest component real.
+*
+* Arguments
+* =========
+*
+* JOBVL (input) CHARACTER*1
+* = 'N': left eigenvectors of A are not computed;
+* = 'V': left eigenvectors of are computed.
+*
+* JOBVR (input) CHARACTER*1
+* = 'N': right eigenvectors of A are not computed;
+* = 'V': right eigenvectors of A are computed.
+*
+* N (input) INTEGER
+* The order of the matrix A. N >= 0.
+*
+* A (input/output) COMPLEX*16 array, dimension (LDA,N)
+* On entry, the N-by-N matrix A.
+* On exit, A has been overwritten.
+*
+* LDA (input) INTEGER
+* The leading dimension of the array A. LDA >= max(1,N).
+*
+* W (output) COMPLEX*16 array, dimension (N)
+* W contains the computed eigenvalues.
+*
+* VL (output) COMPLEX*16 array, dimension (LDVL,N)
+* If JOBVL = 'V', the left eigenvectors u(j) are stored one
+* after another in the columns of VL, in the same order
+* as their eigenvalues.
+* If JOBVL = 'N', VL is not referenced.
+* u(j) = VL(:,j), the j-th column of VL.
+*
+* LDVL (input) INTEGER
+* The leading dimension of the array VL. LDVL >= 1; if
+* JOBVL = 'V', LDVL >= N.
+*
+* VR (output) COMPLEX*16 array, dimension (LDVR,N)
+* If JOBVR = 'V', the right eigenvectors v(j) are stored one
+* after another in the columns of VR, in the same order
+* as their eigenvalues.
+* If JOBVR = 'N', VR is not referenced.
+* v(j) = VR(:,j), the j-th column of VR.
+*
+* LDVR (input) INTEGER
+* The leading dimension of the array VR. LDVR >= 1; if
+* JOBVR = 'V', LDVR >= N.
+*
+* WORK (workspace/output) COMPLEX*16 array, dimension (MAX(1,LWORK))
+* On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
+*
+* LWORK (input) INTEGER
+* The dimension of the array WORK. LWORK >= max(1,2*N).
+* For good performance, LWORK must generally be larger.
+*
+* If LWORK = -1, then a workspace query is assumed; the routine
+* only calculates the optimal size of the WORK array, returns
+* this value as the first entry of the WORK array, and no error
+* message related to LWORK is issued by XERBLA.
+*
+* RWORK (workspace) DOUBLE PRECISION array, dimension (2*N)
+*
+* INFO (output) INTEGER
+* = 0: successful exit
+* < 0: if INFO = -i, the i-th argument had an illegal value.
+* > 0: if INFO = i, the QR algorithm failed to compute all the
+* eigenvalues, and no eigenvectors have been computed;
+* elements and i+1:N of W contain eigenvalues which have
+* converged.
+*
+* =====================================================================
+*
+* .. Parameters ..
+ DOUBLE PRECISION ZERO, ONE
+ PARAMETER ( ZERO = 0.0D0, ONE = 1.0D0 )
+* ..
+* .. Local Scalars ..
+ LOGICAL LQUERY, SCALEA, WANTVL, WANTVR
+ CHARACTER SIDE
+ INTEGER HSWORK, I, IBAL, IERR, IHI, ILO, IRWORK, ITAU,
+ $ IWRK, K, MAXWRK, MINWRK, NOUT
+ DOUBLE PRECISION ANRM, BIGNUM, CSCALE, EPS, SCL, SMLNUM
+ COMPLEX*16 TMP
+* ..
+* .. Local Arrays ..
+ LOGICAL SELECT( 1 )
+ DOUBLE PRECISION DUM( 1 )
+* ..
+* .. External Subroutines ..
+ EXTERNAL DLABAD, XERBLA, ZDSCAL, ZGEBAK, ZGEBAL, ZGEHRD,
+ $ ZHSEQR, ZLACPY, ZLASCL, ZSCAL, ZTREVC, ZUNGHR
+* ..
+* .. External Functions ..
+ LOGICAL LSAME
+ INTEGER IDAMAX, ILAENV
+ DOUBLE PRECISION DLAMCH, DZNRM2, ZLANGE
+ EXTERNAL LSAME, IDAMAX, ILAENV, DLAMCH, DZNRM2, ZLANGE
+* ..
+* .. Intrinsic Functions ..
+ INTRINSIC DBLE, DCMPLX, DCONJG, DIMAG, MAX, SQRT
+* ..
+* .. Executable Statements ..
+*
+* Test the input arguments
+*
+ INFO = 0
+ LQUERY = ( LWORK.EQ.-1 )
+ WANTVL = LSAME( JOBVL, 'V' )
+ WANTVR = LSAME( JOBVR, 'V' )
+ IF( ( .NOT.WANTVL ) .AND. ( .NOT.LSAME( JOBVL, 'N' ) ) ) THEN
+ INFO = -1
+ ELSE IF( ( .NOT.WANTVR ) .AND. ( .NOT.LSAME( JOBVR, 'N' ) ) ) THEN
+ INFO = -2
+ ELSE IF( N.LT.0 ) THEN
+ INFO = -3
+ ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
+ INFO = -5
+ ELSE IF( LDVL.LT.1 .OR. ( WANTVL .AND. LDVL.LT.N ) ) THEN
+ INFO = -8
+ ELSE IF( LDVR.LT.1 .OR. ( WANTVR .AND. LDVR.LT.N ) ) THEN
+ INFO = -10
+ END IF
+*
+* Compute workspace
+* (Note: Comments in the code beginning "Workspace:" describe the
+* minimal amount of workspace needed at that point in the code,
+* as well as the preferred amount for good performance.
+* CWorkspace refers to complex workspace, and RWorkspace to real
+* workspace. NB refers to the optimal block size for the
+* immediately following subroutine, as returned by ILAENV.
+* HSWORK refers to the workspace preferred by ZHSEQR, as
+* calculated below. HSWORK is computed assuming ILO=1 and IHI=N,
+* the worst case.)
+*
+ IF( INFO.EQ.0 ) THEN
+ IF( N.EQ.0 ) THEN
+ MINWRK = 1
+ MAXWRK = 1
+ ELSE
+ MAXWRK = N + N*ILAENV( 1, 'ZGEHRD', ' ', N, 1, N, 0 )
+ MINWRK = 2*N
+ IF( WANTVL ) THEN
+ MAXWRK = MAX( MAXWRK, N + ( N - 1 )*ILAENV( 1, 'ZUNGHR',
+ $ ' ', N, 1, N, -1 ) )
+ CALL ZHSEQR( 'S', 'V', N, 1, N, A, LDA, W, VL, LDVL,
+ $ WORK, -1, INFO )
+ ELSE IF( WANTVR ) THEN
+ MAXWRK = MAX( MAXWRK, N + ( N - 1 )*ILAENV( 1, 'ZUNGHR',
+ $ ' ', N, 1, N, -1 ) )
+ CALL ZHSEQR( 'S', 'V', N, 1, N, A, LDA, W, VR, LDVR,
+ $ WORK, -1, INFO )
+ ELSE
+ CALL ZHSEQR( 'E', 'N', N, 1, N, A, LDA, W, VR, LDVR,
+ $ WORK, -1, INFO )
+ END IF
+ HSWORK = WORK( 1 )
+ MAXWRK = MAX( MAXWRK, HSWORK, MINWRK )
+ END IF
+ WORK( 1 ) = MAXWRK
+*
+ IF( LWORK.LT.MINWRK .AND. .NOT.LQUERY ) THEN
+ INFO = -12
+ END IF
+ END IF
+*
+ IF( INFO.NE.0 ) THEN
+ CALL XERBLA( 'ZGEEV ', -INFO )
+ RETURN
+ ELSE IF( LQUERY ) THEN
+ RETURN
+ END IF
+*
+* Quick return if possible
+*
+ IF( N.EQ.0 )
+ $ RETURN
+*
+* Get machine constants
+*
+ EPS = DLAMCH( 'P' )
+ SMLNUM = DLAMCH( 'S' )
+ BIGNUM = ONE / SMLNUM
+ CALL DLABAD( SMLNUM, BIGNUM )
+ SMLNUM = SQRT( SMLNUM ) / EPS
+ BIGNUM = ONE / SMLNUM
+*
+* Scale A if max element outside range [SMLNUM,BIGNUM]
+*
+ ANRM = ZLANGE( 'M', N, N, A, LDA, DUM )
+ SCALEA = .FALSE.
+ IF( ANRM.GT.ZERO .AND. ANRM.LT.SMLNUM ) THEN
+ SCALEA = .TRUE.
+ CSCALE = SMLNUM
+ ELSE IF( ANRM.GT.BIGNUM ) THEN
+ SCALEA = .TRUE.
+ CSCALE = BIGNUM
+ END IF
+ IF( SCALEA )
+ $ CALL ZLASCL( 'G', 0, 0, ANRM, CSCALE, N, N, A, LDA, IERR )
+*
+* Balance the matrix
+* (CWorkspace: none)
+* (RWorkspace: need N)
+*
+ IBAL = 1
+ CALL ZGEBAL( 'B', N, A, LDA, ILO, IHI, RWORK( IBAL ), IERR )
+*
+* Reduce to upper Hessenberg form
+* (CWorkspace: need 2*N, prefer N+N*NB)
+* (RWorkspace: none)
+*
+ ITAU = 1
+ IWRK = ITAU + N
+ CALL ZGEHRD( N, ILO, IHI, A, LDA, WORK( ITAU ), WORK( IWRK ),
+ $ LWORK-IWRK+1, IERR )
+*
+ IF( WANTVL ) THEN
+*
+* Want left eigenvectors
+* Copy Householder vectors to VL
+*
+ SIDE = 'L'
+ CALL ZLACPY( 'L', N, N, A, LDA, VL, LDVL )
+*
+* Generate unitary matrix in VL
+* (CWorkspace: need 2*N-1, prefer N+(N-1)*NB)
+* (RWorkspace: none)
+*
+ CALL ZUNGHR( N, ILO, IHI, VL, LDVL, WORK( ITAU ), WORK( IWRK ),
+ $ LWORK-IWRK+1, IERR )
+*
+* Perform QR iteration, accumulating Schur vectors in VL
+* (CWorkspace: need 1, prefer HSWORK (see comments) )
+* (RWorkspace: none)
+*
+ IWRK = ITAU
+ CALL ZHSEQR( 'S', 'V', N, ILO, IHI, A, LDA, W, VL, LDVL,
+ $ WORK( IWRK ), LWORK-IWRK+1, INFO )
+*
+ IF( WANTVR ) THEN
+*
+* Want left and right eigenvectors
+* Copy Schur vectors to VR
+*
+ SIDE = 'B'
+ CALL ZLACPY( 'F', N, N, VL, LDVL, VR, LDVR )
+ END IF
+*
+ ELSE IF( WANTVR ) THEN
+*
+* Want right eigenvectors
+* Copy Householder vectors to VR
+*
+ SIDE = 'R'
+ CALL ZLACPY( 'L', N, N, A, LDA, VR, LDVR )
+*
+* Generate unitary matrix in VR
+* (CWorkspace: need 2*N-1, prefer N+(N-1)*NB)
+* (RWorkspace: none)
+*
+ CALL ZUNGHR( N, ILO, IHI, VR, LDVR, WORK( ITAU ), WORK( IWRK ),
+ $ LWORK-IWRK+1, IERR )
+*
+* Perform QR iteration, accumulating Schur vectors in VR
+* (CWorkspace: need 1, prefer HSWORK (see comments) )
+* (RWorkspace: none)
+*
+ IWRK = ITAU
+ CALL ZHSEQR( 'S', 'V', N, ILO, IHI, A, LDA, W, VR, LDVR,
+ $ WORK( IWRK ), LWORK-IWRK+1, INFO )
+*
+ ELSE
+*
+* Compute eigenvalues only
+* (CWorkspace: need 1, prefer HSWORK (see comments) )
+* (RWorkspace: none)
+*
+ IWRK = ITAU
+ CALL ZHSEQR( 'E', 'N', N, ILO, IHI, A, LDA, W, VR, LDVR,
+ $ WORK( IWRK ), LWORK-IWRK+1, INFO )
+ END IF
+*
+* If INFO > 0 from ZHSEQR, then quit
+*
+ IF( INFO.GT.0 )
+ $ GO TO 50
+*
+ IF( WANTVL .OR. WANTVR ) THEN
+*
+* Compute left and/or right eigenvectors
+* (CWorkspace: need 2*N)
+* (RWorkspace: need 2*N)
+*
+ IRWORK = IBAL + N
+ CALL ZTREVC( SIDE, 'B', SELECT, N, A, LDA, VL, LDVL, VR, LDVR,
+ $ N, NOUT, WORK( IWRK ), RWORK( IRWORK ), IERR )
+ END IF
+*
+ IF( WANTVL ) THEN
+*
+* Undo balancing of left eigenvectors
+* (CWorkspace: none)
+* (RWorkspace: need N)
+*
+ CALL ZGEBAK( 'B', 'L', N, ILO, IHI, RWORK( IBAL ), N, VL, LDVL,
+ $ IERR )
+*
+* Normalize left eigenvectors and make largest component real
+*
+ DO 20 I = 1, N
+ SCL = ONE / DZNRM2( N, VL( 1, I ), 1 )
+ CALL ZDSCAL( N, SCL, VL( 1, I ), 1 )
+ DO 10 K = 1, N
+ RWORK( IRWORK+K-1 ) = DBLE( VL( K, I ) )**2 +
+ $ DIMAG( VL( K, I ) )**2
+ 10 CONTINUE
+ K = IDAMAX( N, RWORK( IRWORK ), 1 )
+ TMP = DCONJG( VL( K, I ) ) / SQRT( RWORK( IRWORK+K-1 ) )
+ CALL ZSCAL( N, TMP, VL( 1, I ), 1 )
+ VL( K, I ) = DCMPLX( DBLE( VL( K, I ) ), ZERO )
+ 20 CONTINUE
+ END IF
+*
+ IF( WANTVR ) THEN
+*
+* Undo balancing of right eigenvectors
+* (CWorkspace: none)
+* (RWorkspace: need N)
+*
+ CALL ZGEBAK( 'B', 'R', N, ILO, IHI, RWORK( IBAL ), N, VR, LDVR,
+ $ IERR )
+*
+* Normalize right eigenvectors and make largest component real
+*
+ DO 40 I = 1, N
+ SCL = ONE / DZNRM2( N, VR( 1, I ), 1 )
+ CALL ZDSCAL( N, SCL, VR( 1, I ), 1 )
+ DO 30 K = 1, N
+ RWORK( IRWORK+K-1 ) = DBLE( VR( K, I ) )**2 +
+ $ DIMAG( VR( K, I ) )**2
+ 30 CONTINUE
+ K = IDAMAX( N, RWORK( IRWORK ), 1 )
+ TMP = DCONJG( VR( K, I ) ) / SQRT( RWORK( IRWORK+K-1 ) )
+ CALL ZSCAL( N, TMP, VR( 1, I ), 1 )
+ VR( K, I ) = DCMPLX( DBLE( VR( K, I ) ), ZERO )
+ 40 CONTINUE
+ END IF
+*
+* Undo scaling if necessary
+*
+ 50 CONTINUE
+ IF( SCALEA ) THEN
+ CALL ZLASCL( 'G', 0, 0, CSCALE, ANRM, N-INFO, 1, W( INFO+1 ),
+ $ MAX( N-INFO, 1 ), IERR )
+ IF( INFO.GT.0 ) THEN
+ CALL ZLASCL( 'G', 0, 0, CSCALE, ANRM, ILO-1, 1, W, N, IERR )
+ END IF
+ END IF
+*
+ WORK( 1 ) = MAXWRK
+ RETURN
+*
+* End of ZGEEV
+*
+ END