summaryrefslogtreecommitdiff
path: root/2.3-1/src/fortran/lapack/zgees.f
diff options
context:
space:
mode:
Diffstat (limited to '2.3-1/src/fortran/lapack/zgees.f')
-rw-r--r--2.3-1/src/fortran/lapack/zgees.f324
1 files changed, 324 insertions, 0 deletions
diff --git a/2.3-1/src/fortran/lapack/zgees.f b/2.3-1/src/fortran/lapack/zgees.f
new file mode 100644
index 00000000..ade5f9f2
--- /dev/null
+++ b/2.3-1/src/fortran/lapack/zgees.f
@@ -0,0 +1,324 @@
+ SUBROUTINE ZGEES( JOBVS, SORT, SELECT, N, A, LDA, SDIM, W, VS,
+ $ LDVS, WORK, LWORK, RWORK, BWORK, INFO )
+*
+* -- LAPACK driver routine (version 3.1) --
+* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd..
+* November 2006
+*
+* .. Scalar Arguments ..
+ CHARACTER JOBVS, SORT
+ INTEGER INFO, LDA, LDVS, LWORK, N, SDIM
+* ..
+* .. Array Arguments ..
+ LOGICAL BWORK( * )
+ DOUBLE PRECISION RWORK( * )
+ COMPLEX*16 A( LDA, * ), VS( LDVS, * ), W( * ), WORK( * )
+* ..
+* .. Function Arguments ..
+ LOGICAL SELECT
+ EXTERNAL SELECT
+* ..
+*
+* Purpose
+* =======
+*
+* ZGEES computes for an N-by-N complex nonsymmetric matrix A, the
+* eigenvalues, the Schur form T, and, optionally, the matrix of Schur
+* vectors Z. This gives the Schur factorization A = Z*T*(Z**H).
+*
+* Optionally, it also orders the eigenvalues on the diagonal of the
+* Schur form so that selected eigenvalues are at the top left.
+* The leading columns of Z then form an orthonormal basis for the
+* invariant subspace corresponding to the selected eigenvalues.
+*
+* A complex matrix is in Schur form if it is upper triangular.
+*
+* Arguments
+* =========
+*
+* JOBVS (input) CHARACTER*1
+* = 'N': Schur vectors are not computed;
+* = 'V': Schur vectors are computed.
+*
+* SORT (input) CHARACTER*1
+* Specifies whether or not to order the eigenvalues on the
+* diagonal of the Schur form.
+* = 'N': Eigenvalues are not ordered:
+* = 'S': Eigenvalues are ordered (see SELECT).
+*
+* SELECT (external procedure) LOGICAL FUNCTION of one COMPLEX*16 argument
+* SELECT must be declared EXTERNAL in the calling subroutine.
+* If SORT = 'S', SELECT is used to select eigenvalues to order
+* to the top left of the Schur form.
+* IF SORT = 'N', SELECT is not referenced.
+* The eigenvalue W(j) is selected if SELECT(W(j)) is true.
+*
+* N (input) INTEGER
+* The order of the matrix A. N >= 0.
+*
+* A (input/output) COMPLEX*16 array, dimension (LDA,N)
+* On entry, the N-by-N matrix A.
+* On exit, A has been overwritten by its Schur form T.
+*
+* LDA (input) INTEGER
+* The leading dimension of the array A. LDA >= max(1,N).
+*
+* SDIM (output) INTEGER
+* If SORT = 'N', SDIM = 0.
+* If SORT = 'S', SDIM = number of eigenvalues for which
+* SELECT is true.
+*
+* W (output) COMPLEX*16 array, dimension (N)
+* W contains the computed eigenvalues, in the same order that
+* they appear on the diagonal of the output Schur form T.
+*
+* VS (output) COMPLEX*16 array, dimension (LDVS,N)
+* If JOBVS = 'V', VS contains the unitary matrix Z of Schur
+* vectors.
+* If JOBVS = 'N', VS is not referenced.
+*
+* LDVS (input) INTEGER
+* The leading dimension of the array VS. LDVS >= 1; if
+* JOBVS = 'V', LDVS >= N.
+*
+* WORK (workspace/output) COMPLEX*16 array, dimension (MAX(1,LWORK))
+* On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
+*
+* LWORK (input) INTEGER
+* The dimension of the array WORK. LWORK >= max(1,2*N).
+* For good performance, LWORK must generally be larger.
+*
+* If LWORK = -1, then a workspace query is assumed; the routine
+* only calculates the optimal size of the WORK array, returns
+* this value as the first entry of the WORK array, and no error
+* message related to LWORK is issued by XERBLA.
+*
+* RWORK (workspace) DOUBLE PRECISION array, dimension (N)
+*
+* BWORK (workspace) LOGICAL array, dimension (N)
+* Not referenced if SORT = 'N'.
+*
+* INFO (output) INTEGER
+* = 0: successful exit
+* < 0: if INFO = -i, the i-th argument had an illegal value.
+* > 0: if INFO = i, and i is
+* <= N: the QR algorithm failed to compute all the
+* eigenvalues; elements 1:ILO-1 and i+1:N of W
+* contain those eigenvalues which have converged;
+* if JOBVS = 'V', VS contains the matrix which
+* reduces A to its partially converged Schur form.
+* = N+1: the eigenvalues could not be reordered because
+* some eigenvalues were too close to separate (the
+* problem is very ill-conditioned);
+* = N+2: after reordering, roundoff changed values of
+* some complex eigenvalues so that leading
+* eigenvalues in the Schur form no longer satisfy
+* SELECT = .TRUE.. This could also be caused by
+* underflow due to scaling.
+*
+* =====================================================================
+*
+* .. Parameters ..
+ DOUBLE PRECISION ZERO, ONE
+ PARAMETER ( ZERO = 0.0D0, ONE = 1.0D0 )
+* ..
+* .. Local Scalars ..
+ LOGICAL LQUERY, SCALEA, WANTST, WANTVS
+ INTEGER HSWORK, I, IBAL, ICOND, IERR, IEVAL, IHI, ILO,
+ $ ITAU, IWRK, MAXWRK, MINWRK
+ DOUBLE PRECISION ANRM, BIGNUM, CSCALE, EPS, S, SEP, SMLNUM
+* ..
+* .. Local Arrays ..
+ DOUBLE PRECISION DUM( 1 )
+* ..
+* .. External Subroutines ..
+ EXTERNAL DLABAD, XERBLA, ZCOPY, ZGEBAK, ZGEBAL, ZGEHRD,
+ $ ZHSEQR, ZLACPY, ZLASCL, ZTRSEN, ZUNGHR
+* ..
+* .. External Functions ..
+ LOGICAL LSAME
+ INTEGER ILAENV
+ DOUBLE PRECISION DLAMCH, ZLANGE
+ EXTERNAL LSAME, ILAENV, DLAMCH, ZLANGE
+* ..
+* .. Intrinsic Functions ..
+ INTRINSIC MAX, SQRT
+* ..
+* .. Executable Statements ..
+*
+* Test the input arguments
+*
+ INFO = 0
+ LQUERY = ( LWORK.EQ.-1 )
+ WANTVS = LSAME( JOBVS, 'V' )
+ WANTST = LSAME( SORT, 'S' )
+ IF( ( .NOT.WANTVS ) .AND. ( .NOT.LSAME( JOBVS, 'N' ) ) ) THEN
+ INFO = -1
+ ELSE IF( ( .NOT.WANTST ) .AND. ( .NOT.LSAME( SORT, 'N' ) ) ) THEN
+ INFO = -2
+ ELSE IF( N.LT.0 ) THEN
+ INFO = -4
+ ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
+ INFO = -6
+ ELSE IF( LDVS.LT.1 .OR. ( WANTVS .AND. LDVS.LT.N ) ) THEN
+ INFO = -10
+ END IF
+*
+* Compute workspace
+* (Note: Comments in the code beginning "Workspace:" describe the
+* minimal amount of workspace needed at that point in the code,
+* as well as the preferred amount for good performance.
+* CWorkspace refers to complex workspace, and RWorkspace to real
+* workspace. NB refers to the optimal block size for the
+* immediately following subroutine, as returned by ILAENV.
+* HSWORK refers to the workspace preferred by ZHSEQR, as
+* calculated below. HSWORK is computed assuming ILO=1 and IHI=N,
+* the worst case.)
+*
+ IF( INFO.EQ.0 ) THEN
+ IF( N.EQ.0 ) THEN
+ MINWRK = 1
+ MAXWRK = 1
+ ELSE
+ MAXWRK = N + N*ILAENV( 1, 'ZGEHRD', ' ', N, 1, N, 0 )
+ MINWRK = 2*N
+*
+ CALL ZHSEQR( 'S', JOBVS, N, 1, N, A, LDA, W, VS, LDVS,
+ $ WORK, -1, IEVAL )
+ HSWORK = WORK( 1 )
+*
+ IF( .NOT.WANTVS ) THEN
+ MAXWRK = MAX( MAXWRK, HSWORK )
+ ELSE
+ MAXWRK = MAX( MAXWRK, N + ( N - 1 )*ILAENV( 1, 'ZUNGHR',
+ $ ' ', N, 1, N, -1 ) )
+ MAXWRK = MAX( MAXWRK, HSWORK )
+ END IF
+ END IF
+ WORK( 1 ) = MAXWRK
+*
+ IF( LWORK.LT.MINWRK .AND. .NOT.LQUERY ) THEN
+ INFO = -12
+ END IF
+ END IF
+*
+ IF( INFO.NE.0 ) THEN
+ CALL XERBLA( 'ZGEES ', -INFO )
+ RETURN
+ ELSE IF( LQUERY ) THEN
+ RETURN
+ END IF
+*
+* Quick return if possible
+*
+ IF( N.EQ.0 ) THEN
+ SDIM = 0
+ RETURN
+ END IF
+*
+* Get machine constants
+*
+ EPS = DLAMCH( 'P' )
+ SMLNUM = DLAMCH( 'S' )
+ BIGNUM = ONE / SMLNUM
+ CALL DLABAD( SMLNUM, BIGNUM )
+ SMLNUM = SQRT( SMLNUM ) / EPS
+ BIGNUM = ONE / SMLNUM
+*
+* Scale A if max element outside range [SMLNUM,BIGNUM]
+*
+ ANRM = ZLANGE( 'M', N, N, A, LDA, DUM )
+ SCALEA = .FALSE.
+ IF( ANRM.GT.ZERO .AND. ANRM.LT.SMLNUM ) THEN
+ SCALEA = .TRUE.
+ CSCALE = SMLNUM
+ ELSE IF( ANRM.GT.BIGNUM ) THEN
+ SCALEA = .TRUE.
+ CSCALE = BIGNUM
+ END IF
+ IF( SCALEA )
+ $ CALL ZLASCL( 'G', 0, 0, ANRM, CSCALE, N, N, A, LDA, IERR )
+*
+* Permute the matrix to make it more nearly triangular
+* (CWorkspace: none)
+* (RWorkspace: need N)
+*
+ IBAL = 1
+ CALL ZGEBAL( 'P', N, A, LDA, ILO, IHI, RWORK( IBAL ), IERR )
+*
+* Reduce to upper Hessenberg form
+* (CWorkspace: need 2*N, prefer N+N*NB)
+* (RWorkspace: none)
+*
+ ITAU = 1
+ IWRK = N + ITAU
+ CALL ZGEHRD( N, ILO, IHI, A, LDA, WORK( ITAU ), WORK( IWRK ),
+ $ LWORK-IWRK+1, IERR )
+*
+ IF( WANTVS ) THEN
+*
+* Copy Householder vectors to VS
+*
+ CALL ZLACPY( 'L', N, N, A, LDA, VS, LDVS )
+*
+* Generate unitary matrix in VS
+* (CWorkspace: need 2*N-1, prefer N+(N-1)*NB)
+* (RWorkspace: none)
+*
+ CALL ZUNGHR( N, ILO, IHI, VS, LDVS, WORK( ITAU ), WORK( IWRK ),
+ $ LWORK-IWRK+1, IERR )
+ END IF
+*
+ SDIM = 0
+*
+* Perform QR iteration, accumulating Schur vectors in VS if desired
+* (CWorkspace: need 1, prefer HSWORK (see comments) )
+* (RWorkspace: none)
+*
+ IWRK = ITAU
+ CALL ZHSEQR( 'S', JOBVS, N, ILO, IHI, A, LDA, W, VS, LDVS,
+ $ WORK( IWRK ), LWORK-IWRK+1, IEVAL )
+ IF( IEVAL.GT.0 )
+ $ INFO = IEVAL
+*
+* Sort eigenvalues if desired
+*
+ IF( WANTST .AND. INFO.EQ.0 ) THEN
+ IF( SCALEA )
+ $ CALL ZLASCL( 'G', 0, 0, CSCALE, ANRM, N, 1, W, N, IERR )
+ DO 10 I = 1, N
+ BWORK( I ) = SELECT( W( I ) )
+ 10 CONTINUE
+*
+* Reorder eigenvalues and transform Schur vectors
+* (CWorkspace: none)
+* (RWorkspace: none)
+*
+ CALL ZTRSEN( 'N', JOBVS, BWORK, N, A, LDA, VS, LDVS, W, SDIM,
+ $ S, SEP, WORK( IWRK ), LWORK-IWRK+1, ICOND )
+ END IF
+*
+ IF( WANTVS ) THEN
+*
+* Undo balancing
+* (CWorkspace: none)
+* (RWorkspace: need N)
+*
+ CALL ZGEBAK( 'P', 'R', N, ILO, IHI, RWORK( IBAL ), N, VS, LDVS,
+ $ IERR )
+ END IF
+*
+ IF( SCALEA ) THEN
+*
+* Undo scaling for the Schur form of A
+*
+ CALL ZLASCL( 'U', 0, 0, CSCALE, ANRM, N, N, A, LDA, IERR )
+ CALL ZCOPY( N, A, LDA+1, W, 1 )
+ END IF
+*
+ WORK( 1 ) = MAXWRK
+ RETURN
+*
+* End of ZGEES
+*
+ END