summaryrefslogtreecommitdiff
path: root/2.3-1/src/fortran/lapack/dtzrqf.f
diff options
context:
space:
mode:
Diffstat (limited to '2.3-1/src/fortran/lapack/dtzrqf.f')
-rw-r--r--2.3-1/src/fortran/lapack/dtzrqf.f164
1 files changed, 164 insertions, 0 deletions
diff --git a/2.3-1/src/fortran/lapack/dtzrqf.f b/2.3-1/src/fortran/lapack/dtzrqf.f
new file mode 100644
index 00000000..5555df38
--- /dev/null
+++ b/2.3-1/src/fortran/lapack/dtzrqf.f
@@ -0,0 +1,164 @@
+ SUBROUTINE DTZRQF( M, N, A, LDA, TAU, INFO )
+*
+* -- LAPACK routine (version 3.1) --
+* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd..
+* November 2006
+*
+* .. Scalar Arguments ..
+ INTEGER INFO, LDA, M, N
+* ..
+* .. Array Arguments ..
+ DOUBLE PRECISION A( LDA, * ), TAU( * )
+* ..
+*
+* Purpose
+* =======
+*
+* This routine is deprecated and has been replaced by routine DTZRZF.
+*
+* DTZRQF reduces the M-by-N ( M<=N ) real upper trapezoidal matrix A
+* to upper triangular form by means of orthogonal transformations.
+*
+* The upper trapezoidal matrix A is factored as
+*
+* A = ( R 0 ) * Z,
+*
+* where Z is an N-by-N orthogonal matrix and R is an M-by-M upper
+* triangular matrix.
+*
+* Arguments
+* =========
+*
+* M (input) INTEGER
+* The number of rows of the matrix A. M >= 0.
+*
+* N (input) INTEGER
+* The number of columns of the matrix A. N >= M.
+*
+* A (input/output) DOUBLE PRECISION array, dimension (LDA,N)
+* On entry, the leading M-by-N upper trapezoidal part of the
+* array A must contain the matrix to be factorized.
+* On exit, the leading M-by-M upper triangular part of A
+* contains the upper triangular matrix R, and elements M+1 to
+* N of the first M rows of A, with the array TAU, represent the
+* orthogonal matrix Z as a product of M elementary reflectors.
+*
+* LDA (input) INTEGER
+* The leading dimension of the array A. LDA >= max(1,M).
+*
+* TAU (output) DOUBLE PRECISION array, dimension (M)
+* The scalar factors of the elementary reflectors.
+*
+* INFO (output) INTEGER
+* = 0: successful exit
+* < 0: if INFO = -i, the i-th argument had an illegal value
+*
+* Further Details
+* ===============
+*
+* The factorization is obtained by Householder's method. The kth
+* transformation matrix, Z( k ), which is used to introduce zeros into
+* the ( m - k + 1 )th row of A, is given in the form
+*
+* Z( k ) = ( I 0 ),
+* ( 0 T( k ) )
+*
+* where
+*
+* T( k ) = I - tau*u( k )*u( k )', u( k ) = ( 1 ),
+* ( 0 )
+* ( z( k ) )
+*
+* tau is a scalar and z( k ) is an ( n - m ) element vector.
+* tau and z( k ) are chosen to annihilate the elements of the kth row
+* of X.
+*
+* The scalar tau is returned in the kth element of TAU and the vector
+* u( k ) in the kth row of A, such that the elements of z( k ) are
+* in a( k, m + 1 ), ..., a( k, n ). The elements of R are returned in
+* the upper triangular part of A.
+*
+* Z is given by
+*
+* Z = Z( 1 ) * Z( 2 ) * ... * Z( m ).
+*
+* =====================================================================
+*
+* .. Parameters ..
+ DOUBLE PRECISION ONE, ZERO
+ PARAMETER ( ONE = 1.0D+0, ZERO = 0.0D+0 )
+* ..
+* .. Local Scalars ..
+ INTEGER I, K, M1
+* ..
+* .. Intrinsic Functions ..
+ INTRINSIC MAX, MIN
+* ..
+* .. External Subroutines ..
+ EXTERNAL DAXPY, DCOPY, DGEMV, DGER, DLARFG, XERBLA
+* ..
+* .. Executable Statements ..
+*
+* Test the input parameters.
+*
+ INFO = 0
+ IF( M.LT.0 ) THEN
+ INFO = -1
+ ELSE IF( N.LT.M ) THEN
+ INFO = -2
+ ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
+ INFO = -4
+ END IF
+ IF( INFO.NE.0 ) THEN
+ CALL XERBLA( 'DTZRQF', -INFO )
+ RETURN
+ END IF
+*
+* Perform the factorization.
+*
+ IF( M.EQ.0 )
+ $ RETURN
+ IF( M.EQ.N ) THEN
+ DO 10 I = 1, N
+ TAU( I ) = ZERO
+ 10 CONTINUE
+ ELSE
+ M1 = MIN( M+1, N )
+ DO 20 K = M, 1, -1
+*
+* Use a Householder reflection to zero the kth row of A.
+* First set up the reflection.
+*
+ CALL DLARFG( N-M+1, A( K, K ), A( K, M1 ), LDA, TAU( K ) )
+*
+ IF( ( TAU( K ).NE.ZERO ) .AND. ( K.GT.1 ) ) THEN
+*
+* We now perform the operation A := A*P( k ).
+*
+* Use the first ( k - 1 ) elements of TAU to store a( k ),
+* where a( k ) consists of the first ( k - 1 ) elements of
+* the kth column of A. Also let B denote the first
+* ( k - 1 ) rows of the last ( n - m ) columns of A.
+*
+ CALL DCOPY( K-1, A( 1, K ), 1, TAU, 1 )
+*
+* Form w = a( k ) + B*z( k ) in TAU.
+*
+ CALL DGEMV( 'No transpose', K-1, N-M, ONE, A( 1, M1 ),
+ $ LDA, A( K, M1 ), LDA, ONE, TAU, 1 )
+*
+* Now form a( k ) := a( k ) - tau*w
+* and B := B - tau*w*z( k )'.
+*
+ CALL DAXPY( K-1, -TAU( K ), TAU, 1, A( 1, K ), 1 )
+ CALL DGER( K-1, N-M, -TAU( K ), TAU, 1, A( K, M1 ), LDA,
+ $ A( 1, M1 ), LDA )
+ END IF
+ 20 CONTINUE
+ END IF
+*
+ RETURN
+*
+* End of DTZRQF
+*
+ END