summaryrefslogtreecommitdiff
path: root/2.3-1/src/fortran/lapack/dtgex2.f
diff options
context:
space:
mode:
Diffstat (limited to '2.3-1/src/fortran/lapack/dtgex2.f')
-rw-r--r--2.3-1/src/fortran/lapack/dtgex2.f581
1 files changed, 581 insertions, 0 deletions
diff --git a/2.3-1/src/fortran/lapack/dtgex2.f b/2.3-1/src/fortran/lapack/dtgex2.f
new file mode 100644
index 00000000..8351b7fd
--- /dev/null
+++ b/2.3-1/src/fortran/lapack/dtgex2.f
@@ -0,0 +1,581 @@
+ SUBROUTINE DTGEX2( WANTQ, WANTZ, N, A, LDA, B, LDB, Q, LDQ, Z,
+ $ LDZ, J1, N1, N2, WORK, LWORK, INFO )
+*
+* -- LAPACK auxiliary routine (version 3.1) --
+* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd..
+* November 2006
+*
+* .. Scalar Arguments ..
+ LOGICAL WANTQ, WANTZ
+ INTEGER INFO, J1, LDA, LDB, LDQ, LDZ, LWORK, N, N1, N2
+* ..
+* .. Array Arguments ..
+ DOUBLE PRECISION A( LDA, * ), B( LDB, * ), Q( LDQ, * ),
+ $ WORK( * ), Z( LDZ, * )
+* ..
+*
+* Purpose
+* =======
+*
+* DTGEX2 swaps adjacent diagonal blocks (A11, B11) and (A22, B22)
+* of size 1-by-1 or 2-by-2 in an upper (quasi) triangular matrix pair
+* (A, B) by an orthogonal equivalence transformation.
+*
+* (A, B) must be in generalized real Schur canonical form (as returned
+* by DGGES), i.e. A is block upper triangular with 1-by-1 and 2-by-2
+* diagonal blocks. B is upper triangular.
+*
+* Optionally, the matrices Q and Z of generalized Schur vectors are
+* updated.
+*
+* Q(in) * A(in) * Z(in)' = Q(out) * A(out) * Z(out)'
+* Q(in) * B(in) * Z(in)' = Q(out) * B(out) * Z(out)'
+*
+*
+* Arguments
+* =========
+*
+* WANTQ (input) LOGICAL
+* .TRUE. : update the left transformation matrix Q;
+* .FALSE.: do not update Q.
+*
+* WANTZ (input) LOGICAL
+* .TRUE. : update the right transformation matrix Z;
+* .FALSE.: do not update Z.
+*
+* N (input) INTEGER
+* The order of the matrices A and B. N >= 0.
+*
+* A (input/output) DOUBLE PRECISION arrays, dimensions (LDA,N)
+* On entry, the matrix A in the pair (A, B).
+* On exit, the updated matrix A.
+*
+* LDA (input) INTEGER
+* The leading dimension of the array A. LDA >= max(1,N).
+*
+* B (input/output) DOUBLE PRECISION arrays, dimensions (LDB,N)
+* On entry, the matrix B in the pair (A, B).
+* On exit, the updated matrix B.
+*
+* LDB (input) INTEGER
+* The leading dimension of the array B. LDB >= max(1,N).
+*
+* Q (input/output) DOUBLE PRECISION array, dimension (LDZ,N)
+* On entry, if WANTQ = .TRUE., the orthogonal matrix Q.
+* On exit, the updated matrix Q.
+* Not referenced if WANTQ = .FALSE..
+*
+* LDQ (input) INTEGER
+* The leading dimension of the array Q. LDQ >= 1.
+* If WANTQ = .TRUE., LDQ >= N.
+*
+* Z (input/output) DOUBLE PRECISION array, dimension (LDZ,N)
+* On entry, if WANTZ =.TRUE., the orthogonal matrix Z.
+* On exit, the updated matrix Z.
+* Not referenced if WANTZ = .FALSE..
+*
+* LDZ (input) INTEGER
+* The leading dimension of the array Z. LDZ >= 1.
+* If WANTZ = .TRUE., LDZ >= N.
+*
+* J1 (input) INTEGER
+* The index to the first block (A11, B11). 1 <= J1 <= N.
+*
+* N1 (input) INTEGER
+* The order of the first block (A11, B11). N1 = 0, 1 or 2.
+*
+* N2 (input) INTEGER
+* The order of the second block (A22, B22). N2 = 0, 1 or 2.
+*
+* WORK (workspace) DOUBLE PRECISION array, dimension (MAX(1,LWORK)).
+*
+* LWORK (input) INTEGER
+* The dimension of the array WORK.
+* LWORK >= MAX( 1, N*(N2+N1), (N2+N1)*(N2+N1)*2 )
+*
+* INFO (output) INTEGER
+* =0: Successful exit
+* >0: If INFO = 1, the transformed matrix (A, B) would be
+* too far from generalized Schur form; the blocks are
+* not swapped and (A, B) and (Q, Z) are unchanged.
+* The problem of swapping is too ill-conditioned.
+* <0: If INFO = -16: LWORK is too small. Appropriate value
+* for LWORK is returned in WORK(1).
+*
+* Further Details
+* ===============
+*
+* Based on contributions by
+* Bo Kagstrom and Peter Poromaa, Department of Computing Science,
+* Umea University, S-901 87 Umea, Sweden.
+*
+* In the current code both weak and strong stability tests are
+* performed. The user can omit the strong stability test by changing
+* the internal logical parameter WANDS to .FALSE.. See ref. [2] for
+* details.
+*
+* [1] B. Kagstrom; A Direct Method for Reordering Eigenvalues in the
+* Generalized Real Schur Form of a Regular Matrix Pair (A, B), in
+* M.S. Moonen et al (eds), Linear Algebra for Large Scale and
+* Real-Time Applications, Kluwer Academic Publ. 1993, pp 195-218.
+*
+* [2] B. Kagstrom and P. Poromaa; Computing Eigenspaces with Specified
+* Eigenvalues of a Regular Matrix Pair (A, B) and Condition
+* Estimation: Theory, Algorithms and Software,
+* Report UMINF - 94.04, Department of Computing Science, Umea
+* University, S-901 87 Umea, Sweden, 1994. Also as LAPACK Working
+* Note 87. To appear in Numerical Algorithms, 1996.
+*
+* =====================================================================
+* Replaced various illegal calls to DCOPY by calls to DLASET, or by DO
+* loops. Sven Hammarling, 1/5/02.
+*
+* .. Parameters ..
+ DOUBLE PRECISION ZERO, ONE
+ PARAMETER ( ZERO = 0.0D+0, ONE = 1.0D+0 )
+ DOUBLE PRECISION TEN
+ PARAMETER ( TEN = 1.0D+01 )
+ INTEGER LDST
+ PARAMETER ( LDST = 4 )
+ LOGICAL WANDS
+ PARAMETER ( WANDS = .TRUE. )
+* ..
+* .. Local Scalars ..
+ LOGICAL DTRONG, WEAK
+ INTEGER I, IDUM, LINFO, M
+ DOUBLE PRECISION BQRA21, BRQA21, DDUM, DNORM, DSCALE, DSUM, EPS,
+ $ F, G, SA, SB, SCALE, SMLNUM, SS, THRESH, WS
+* ..
+* .. Local Arrays ..
+ INTEGER IWORK( LDST )
+ DOUBLE PRECISION AI( 2 ), AR( 2 ), BE( 2 ), IR( LDST, LDST ),
+ $ IRCOP( LDST, LDST ), LI( LDST, LDST ),
+ $ LICOP( LDST, LDST ), S( LDST, LDST ),
+ $ SCPY( LDST, LDST ), T( LDST, LDST ),
+ $ TAUL( LDST ), TAUR( LDST ), TCPY( LDST, LDST )
+* ..
+* .. External Functions ..
+ DOUBLE PRECISION DLAMCH
+ EXTERNAL DLAMCH
+* ..
+* .. External Subroutines ..
+ EXTERNAL DGEMM, DGEQR2, DGERQ2, DLACPY, DLAGV2, DLARTG,
+ $ DLASET, DLASSQ, DORG2R, DORGR2, DORM2R, DORMR2,
+ $ DROT, DSCAL, DTGSY2
+* ..
+* .. Intrinsic Functions ..
+ INTRINSIC ABS, MAX, SQRT
+* ..
+* .. Executable Statements ..
+*
+ INFO = 0
+*
+* Quick return if possible
+*
+ IF( N.LE.1 .OR. N1.LE.0 .OR. N2.LE.0 )
+ $ RETURN
+ IF( N1.GT.N .OR. ( J1+N1 ).GT.N )
+ $ RETURN
+ M = N1 + N2
+ IF( LWORK.LT.MAX( 1, N*M, M*M*2 ) ) THEN
+ INFO = -16
+ WORK( 1 ) = MAX( 1, N*M, M*M*2 )
+ RETURN
+ END IF
+*
+ WEAK = .FALSE.
+ DTRONG = .FALSE.
+*
+* Make a local copy of selected block
+*
+ CALL DLASET( 'Full', LDST, LDST, ZERO, ZERO, LI, LDST )
+ CALL DLASET( 'Full', LDST, LDST, ZERO, ZERO, IR, LDST )
+ CALL DLACPY( 'Full', M, M, A( J1, J1 ), LDA, S, LDST )
+ CALL DLACPY( 'Full', M, M, B( J1, J1 ), LDB, T, LDST )
+*
+* Compute threshold for testing acceptance of swapping.
+*
+ EPS = DLAMCH( 'P' )
+ SMLNUM = DLAMCH( 'S' ) / EPS
+ DSCALE = ZERO
+ DSUM = ONE
+ CALL DLACPY( 'Full', M, M, S, LDST, WORK, M )
+ CALL DLASSQ( M*M, WORK, 1, DSCALE, DSUM )
+ CALL DLACPY( 'Full', M, M, T, LDST, WORK, M )
+ CALL DLASSQ( M*M, WORK, 1, DSCALE, DSUM )
+ DNORM = DSCALE*SQRT( DSUM )
+ THRESH = MAX( TEN*EPS*DNORM, SMLNUM )
+*
+ IF( M.EQ.2 ) THEN
+*
+* CASE 1: Swap 1-by-1 and 1-by-1 blocks.
+*
+* Compute orthogonal QL and RQ that swap 1-by-1 and 1-by-1 blocks
+* using Givens rotations and perform the swap tentatively.
+*
+ F = S( 2, 2 )*T( 1, 1 ) - T( 2, 2 )*S( 1, 1 )
+ G = S( 2, 2 )*T( 1, 2 ) - T( 2, 2 )*S( 1, 2 )
+ SB = ABS( T( 2, 2 ) )
+ SA = ABS( S( 2, 2 ) )
+ CALL DLARTG( F, G, IR( 1, 2 ), IR( 1, 1 ), DDUM )
+ IR( 2, 1 ) = -IR( 1, 2 )
+ IR( 2, 2 ) = IR( 1, 1 )
+ CALL DROT( 2, S( 1, 1 ), 1, S( 1, 2 ), 1, IR( 1, 1 ),
+ $ IR( 2, 1 ) )
+ CALL DROT( 2, T( 1, 1 ), 1, T( 1, 2 ), 1, IR( 1, 1 ),
+ $ IR( 2, 1 ) )
+ IF( SA.GE.SB ) THEN
+ CALL DLARTG( S( 1, 1 ), S( 2, 1 ), LI( 1, 1 ), LI( 2, 1 ),
+ $ DDUM )
+ ELSE
+ CALL DLARTG( T( 1, 1 ), T( 2, 1 ), LI( 1, 1 ), LI( 2, 1 ),
+ $ DDUM )
+ END IF
+ CALL DROT( 2, S( 1, 1 ), LDST, S( 2, 1 ), LDST, LI( 1, 1 ),
+ $ LI( 2, 1 ) )
+ CALL DROT( 2, T( 1, 1 ), LDST, T( 2, 1 ), LDST, LI( 1, 1 ),
+ $ LI( 2, 1 ) )
+ LI( 2, 2 ) = LI( 1, 1 )
+ LI( 1, 2 ) = -LI( 2, 1 )
+*
+* Weak stability test:
+* |S21| + |T21| <= O(EPS * F-norm((S, T)))
+*
+ WS = ABS( S( 2, 1 ) ) + ABS( T( 2, 1 ) )
+ WEAK = WS.LE.THRESH
+ IF( .NOT.WEAK )
+ $ GO TO 70
+*
+ IF( WANDS ) THEN
+*
+* Strong stability test:
+* F-norm((A-QL'*S*QR, B-QL'*T*QR)) <= O(EPS*F-norm((A,B)))
+*
+ CALL DLACPY( 'Full', M, M, A( J1, J1 ), LDA, WORK( M*M+1 ),
+ $ M )
+ CALL DGEMM( 'N', 'N', M, M, M, ONE, LI, LDST, S, LDST, ZERO,
+ $ WORK, M )
+ CALL DGEMM( 'N', 'T', M, M, M, -ONE, WORK, M, IR, LDST, ONE,
+ $ WORK( M*M+1 ), M )
+ DSCALE = ZERO
+ DSUM = ONE
+ CALL DLASSQ( M*M, WORK( M*M+1 ), 1, DSCALE, DSUM )
+*
+ CALL DLACPY( 'Full', M, M, B( J1, J1 ), LDB, WORK( M*M+1 ),
+ $ M )
+ CALL DGEMM( 'N', 'N', M, M, M, ONE, LI, LDST, T, LDST, ZERO,
+ $ WORK, M )
+ CALL DGEMM( 'N', 'T', M, M, M, -ONE, WORK, M, IR, LDST, ONE,
+ $ WORK( M*M+1 ), M )
+ CALL DLASSQ( M*M, WORK( M*M+1 ), 1, DSCALE, DSUM )
+ SS = DSCALE*SQRT( DSUM )
+ DTRONG = SS.LE.THRESH
+ IF( .NOT.DTRONG )
+ $ GO TO 70
+ END IF
+*
+* Update (A(J1:J1+M-1, M+J1:N), B(J1:J1+M-1, M+J1:N)) and
+* (A(1:J1-1, J1:J1+M), B(1:J1-1, J1:J1+M)).
+*
+ CALL DROT( J1+1, A( 1, J1 ), 1, A( 1, J1+1 ), 1, IR( 1, 1 ),
+ $ IR( 2, 1 ) )
+ CALL DROT( J1+1, B( 1, J1 ), 1, B( 1, J1+1 ), 1, IR( 1, 1 ),
+ $ IR( 2, 1 ) )
+ CALL DROT( N-J1+1, A( J1, J1 ), LDA, A( J1+1, J1 ), LDA,
+ $ LI( 1, 1 ), LI( 2, 1 ) )
+ CALL DROT( N-J1+1, B( J1, J1 ), LDB, B( J1+1, J1 ), LDB,
+ $ LI( 1, 1 ), LI( 2, 1 ) )
+*
+* Set N1-by-N2 (2,1) - blocks to ZERO.
+*
+ A( J1+1, J1 ) = ZERO
+ B( J1+1, J1 ) = ZERO
+*
+* Accumulate transformations into Q and Z if requested.
+*
+ IF( WANTZ )
+ $ CALL DROT( N, Z( 1, J1 ), 1, Z( 1, J1+1 ), 1, IR( 1, 1 ),
+ $ IR( 2, 1 ) )
+ IF( WANTQ )
+ $ CALL DROT( N, Q( 1, J1 ), 1, Q( 1, J1+1 ), 1, LI( 1, 1 ),
+ $ LI( 2, 1 ) )
+*
+* Exit with INFO = 0 if swap was successfully performed.
+*
+ RETURN
+*
+ ELSE
+*
+* CASE 2: Swap 1-by-1 and 2-by-2 blocks, or 2-by-2
+* and 2-by-2 blocks.
+*
+* Solve the generalized Sylvester equation
+* S11 * R - L * S22 = SCALE * S12
+* T11 * R - L * T22 = SCALE * T12
+* for R and L. Solutions in LI and IR.
+*
+ CALL DLACPY( 'Full', N1, N2, T( 1, N1+1 ), LDST, LI, LDST )
+ CALL DLACPY( 'Full', N1, N2, S( 1, N1+1 ), LDST,
+ $ IR( N2+1, N1+1 ), LDST )
+ CALL DTGSY2( 'N', 0, N1, N2, S, LDST, S( N1+1, N1+1 ), LDST,
+ $ IR( N2+1, N1+1 ), LDST, T, LDST, T( N1+1, N1+1 ),
+ $ LDST, LI, LDST, SCALE, DSUM, DSCALE, IWORK, IDUM,
+ $ LINFO )
+*
+* Compute orthogonal matrix QL:
+*
+* QL' * LI = [ TL ]
+* [ 0 ]
+* where
+* LI = [ -L ]
+* [ SCALE * identity(N2) ]
+*
+ DO 10 I = 1, N2
+ CALL DSCAL( N1, -ONE, LI( 1, I ), 1 )
+ LI( N1+I, I ) = SCALE
+ 10 CONTINUE
+ CALL DGEQR2( M, N2, LI, LDST, TAUL, WORK, LINFO )
+ IF( LINFO.NE.0 )
+ $ GO TO 70
+ CALL DORG2R( M, M, N2, LI, LDST, TAUL, WORK, LINFO )
+ IF( LINFO.NE.0 )
+ $ GO TO 70
+*
+* Compute orthogonal matrix RQ:
+*
+* IR * RQ' = [ 0 TR],
+*
+* where IR = [ SCALE * identity(N1), R ]
+*
+ DO 20 I = 1, N1
+ IR( N2+I, I ) = SCALE
+ 20 CONTINUE
+ CALL DGERQ2( N1, M, IR( N2+1, 1 ), LDST, TAUR, WORK, LINFO )
+ IF( LINFO.NE.0 )
+ $ GO TO 70
+ CALL DORGR2( M, M, N1, IR, LDST, TAUR, WORK, LINFO )
+ IF( LINFO.NE.0 )
+ $ GO TO 70
+*
+* Perform the swapping tentatively:
+*
+ CALL DGEMM( 'T', 'N', M, M, M, ONE, LI, LDST, S, LDST, ZERO,
+ $ WORK, M )
+ CALL DGEMM( 'N', 'T', M, M, M, ONE, WORK, M, IR, LDST, ZERO, S,
+ $ LDST )
+ CALL DGEMM( 'T', 'N', M, M, M, ONE, LI, LDST, T, LDST, ZERO,
+ $ WORK, M )
+ CALL DGEMM( 'N', 'T', M, M, M, ONE, WORK, M, IR, LDST, ZERO, T,
+ $ LDST )
+ CALL DLACPY( 'F', M, M, S, LDST, SCPY, LDST )
+ CALL DLACPY( 'F', M, M, T, LDST, TCPY, LDST )
+ CALL DLACPY( 'F', M, M, IR, LDST, IRCOP, LDST )
+ CALL DLACPY( 'F', M, M, LI, LDST, LICOP, LDST )
+*
+* Triangularize the B-part by an RQ factorization.
+* Apply transformation (from left) to A-part, giving S.
+*
+ CALL DGERQ2( M, M, T, LDST, TAUR, WORK, LINFO )
+ IF( LINFO.NE.0 )
+ $ GO TO 70
+ CALL DORMR2( 'R', 'T', M, M, M, T, LDST, TAUR, S, LDST, WORK,
+ $ LINFO )
+ IF( LINFO.NE.0 )
+ $ GO TO 70
+ CALL DORMR2( 'L', 'N', M, M, M, T, LDST, TAUR, IR, LDST, WORK,
+ $ LINFO )
+ IF( LINFO.NE.0 )
+ $ GO TO 70
+*
+* Compute F-norm(S21) in BRQA21. (T21 is 0.)
+*
+ DSCALE = ZERO
+ DSUM = ONE
+ DO 30 I = 1, N2
+ CALL DLASSQ( N1, S( N2+1, I ), 1, DSCALE, DSUM )
+ 30 CONTINUE
+ BRQA21 = DSCALE*SQRT( DSUM )
+*
+* Triangularize the B-part by a QR factorization.
+* Apply transformation (from right) to A-part, giving S.
+*
+ CALL DGEQR2( M, M, TCPY, LDST, TAUL, WORK, LINFO )
+ IF( LINFO.NE.0 )
+ $ GO TO 70
+ CALL DORM2R( 'L', 'T', M, M, M, TCPY, LDST, TAUL, SCPY, LDST,
+ $ WORK, INFO )
+ CALL DORM2R( 'R', 'N', M, M, M, TCPY, LDST, TAUL, LICOP, LDST,
+ $ WORK, INFO )
+ IF( LINFO.NE.0 )
+ $ GO TO 70
+*
+* Compute F-norm(S21) in BQRA21. (T21 is 0.)
+*
+ DSCALE = ZERO
+ DSUM = ONE
+ DO 40 I = 1, N2
+ CALL DLASSQ( N1, SCPY( N2+1, I ), 1, DSCALE, DSUM )
+ 40 CONTINUE
+ BQRA21 = DSCALE*SQRT( DSUM )
+*
+* Decide which method to use.
+* Weak stability test:
+* F-norm(S21) <= O(EPS * F-norm((S, T)))
+*
+ IF( BQRA21.LE.BRQA21 .AND. BQRA21.LE.THRESH ) THEN
+ CALL DLACPY( 'F', M, M, SCPY, LDST, S, LDST )
+ CALL DLACPY( 'F', M, M, TCPY, LDST, T, LDST )
+ CALL DLACPY( 'F', M, M, IRCOP, LDST, IR, LDST )
+ CALL DLACPY( 'F', M, M, LICOP, LDST, LI, LDST )
+ ELSE IF( BRQA21.GE.THRESH ) THEN
+ GO TO 70
+ END IF
+*
+* Set lower triangle of B-part to zero
+*
+ CALL DLASET( 'Lower', M-1, M-1, ZERO, ZERO, T(2,1), LDST )
+*
+ IF( WANDS ) THEN
+*
+* Strong stability test:
+* F-norm((A-QL*S*QR', B-QL*T*QR')) <= O(EPS*F-norm((A,B)))
+*
+ CALL DLACPY( 'Full', M, M, A( J1, J1 ), LDA, WORK( M*M+1 ),
+ $ M )
+ CALL DGEMM( 'N', 'N', M, M, M, ONE, LI, LDST, S, LDST, ZERO,
+ $ WORK, M )
+ CALL DGEMM( 'N', 'N', M, M, M, -ONE, WORK, M, IR, LDST, ONE,
+ $ WORK( M*M+1 ), M )
+ DSCALE = ZERO
+ DSUM = ONE
+ CALL DLASSQ( M*M, WORK( M*M+1 ), 1, DSCALE, DSUM )
+*
+ CALL DLACPY( 'Full', M, M, B( J1, J1 ), LDB, WORK( M*M+1 ),
+ $ M )
+ CALL DGEMM( 'N', 'N', M, M, M, ONE, LI, LDST, T, LDST, ZERO,
+ $ WORK, M )
+ CALL DGEMM( 'N', 'N', M, M, M, -ONE, WORK, M, IR, LDST, ONE,
+ $ WORK( M*M+1 ), M )
+ CALL DLASSQ( M*M, WORK( M*M+1 ), 1, DSCALE, DSUM )
+ SS = DSCALE*SQRT( DSUM )
+ DTRONG = ( SS.LE.THRESH )
+ IF( .NOT.DTRONG )
+ $ GO TO 70
+*
+ END IF
+*
+* If the swap is accepted ("weakly" and "strongly"), apply the
+* transformations and set N1-by-N2 (2,1)-block to zero.
+*
+ CALL DLASET( 'Full', N1, N2, ZERO, ZERO, S(N2+1,1), LDST )
+*
+* copy back M-by-M diagonal block starting at index J1 of (A, B)
+*
+ CALL DLACPY( 'F', M, M, S, LDST, A( J1, J1 ), LDA )
+ CALL DLACPY( 'F', M, M, T, LDST, B( J1, J1 ), LDB )
+ CALL DLASET( 'Full', LDST, LDST, ZERO, ZERO, T, LDST )
+*
+* Standardize existing 2-by-2 blocks.
+*
+ DO 50 I = 1, M*M
+ WORK(I) = ZERO
+ 50 CONTINUE
+ WORK( 1 ) = ONE
+ T( 1, 1 ) = ONE
+ IDUM = LWORK - M*M - 2
+ IF( N2.GT.1 ) THEN
+ CALL DLAGV2( A( J1, J1 ), LDA, B( J1, J1 ), LDB, AR, AI, BE,
+ $ WORK( 1 ), WORK( 2 ), T( 1, 1 ), T( 2, 1 ) )
+ WORK( M+1 ) = -WORK( 2 )
+ WORK( M+2 ) = WORK( 1 )
+ T( N2, N2 ) = T( 1, 1 )
+ T( 1, 2 ) = -T( 2, 1 )
+ END IF
+ WORK( M*M ) = ONE
+ T( M, M ) = ONE
+*
+ IF( N1.GT.1 ) THEN
+ CALL DLAGV2( A( J1+N2, J1+N2 ), LDA, B( J1+N2, J1+N2 ), LDB,
+ $ TAUR, TAUL, WORK( M*M+1 ), WORK( N2*M+N2+1 ),
+ $ WORK( N2*M+N2+2 ), T( N2+1, N2+1 ),
+ $ T( M, M-1 ) )
+ WORK( M*M ) = WORK( N2*M+N2+1 )
+ WORK( M*M-1 ) = -WORK( N2*M+N2+2 )
+ T( M, M ) = T( N2+1, N2+1 )
+ T( M-1, M ) = -T( M, M-1 )
+ END IF
+ CALL DGEMM( 'T', 'N', N2, N1, N2, ONE, WORK, M, A( J1, J1+N2 ),
+ $ LDA, ZERO, WORK( M*M+1 ), N2 )
+ CALL DLACPY( 'Full', N2, N1, WORK( M*M+1 ), N2, A( J1, J1+N2 ),
+ $ LDA )
+ CALL DGEMM( 'T', 'N', N2, N1, N2, ONE, WORK, M, B( J1, J1+N2 ),
+ $ LDB, ZERO, WORK( M*M+1 ), N2 )
+ CALL DLACPY( 'Full', N2, N1, WORK( M*M+1 ), N2, B( J1, J1+N2 ),
+ $ LDB )
+ CALL DGEMM( 'N', 'N', M, M, M, ONE, LI, LDST, WORK, M, ZERO,
+ $ WORK( M*M+1 ), M )
+ CALL DLACPY( 'Full', M, M, WORK( M*M+1 ), M, LI, LDST )
+ CALL DGEMM( 'N', 'N', N2, N1, N1, ONE, A( J1, J1+N2 ), LDA,
+ $ T( N2+1, N2+1 ), LDST, ZERO, WORK, N2 )
+ CALL DLACPY( 'Full', N2, N1, WORK, N2, A( J1, J1+N2 ), LDA )
+ CALL DGEMM( 'N', 'N', N2, N1, N1, ONE, B( J1, J1+N2 ), LDB,
+ $ T( N2+1, N2+1 ), LDST, ZERO, WORK, N2 )
+ CALL DLACPY( 'Full', N2, N1, WORK, N2, B( J1, J1+N2 ), LDB )
+ CALL DGEMM( 'T', 'N', M, M, M, ONE, IR, LDST, T, LDST, ZERO,
+ $ WORK, M )
+ CALL DLACPY( 'Full', M, M, WORK, M, IR, LDST )
+*
+* Accumulate transformations into Q and Z if requested.
+*
+ IF( WANTQ ) THEN
+ CALL DGEMM( 'N', 'N', N, M, M, ONE, Q( 1, J1 ), LDQ, LI,
+ $ LDST, ZERO, WORK, N )
+ CALL DLACPY( 'Full', N, M, WORK, N, Q( 1, J1 ), LDQ )
+*
+ END IF
+*
+ IF( WANTZ ) THEN
+ CALL DGEMM( 'N', 'N', N, M, M, ONE, Z( 1, J1 ), LDZ, IR,
+ $ LDST, ZERO, WORK, N )
+ CALL DLACPY( 'Full', N, M, WORK, N, Z( 1, J1 ), LDZ )
+*
+ END IF
+*
+* Update (A(J1:J1+M-1, M+J1:N), B(J1:J1+M-1, M+J1:N)) and
+* (A(1:J1-1, J1:J1+M), B(1:J1-1, J1:J1+M)).
+*
+ I = J1 + M
+ IF( I.LE.N ) THEN
+ CALL DGEMM( 'T', 'N', M, N-I+1, M, ONE, LI, LDST,
+ $ A( J1, I ), LDA, ZERO, WORK, M )
+ CALL DLACPY( 'Full', M, N-I+1, WORK, M, A( J1, I ), LDA )
+ CALL DGEMM( 'T', 'N', M, N-I+1, M, ONE, LI, LDST,
+ $ B( J1, I ), LDA, ZERO, WORK, M )
+ CALL DLACPY( 'Full', M, N-I+1, WORK, M, B( J1, I ), LDB )
+ END IF
+ I = J1 - 1
+ IF( I.GT.0 ) THEN
+ CALL DGEMM( 'N', 'N', I, M, M, ONE, A( 1, J1 ), LDA, IR,
+ $ LDST, ZERO, WORK, I )
+ CALL DLACPY( 'Full', I, M, WORK, I, A( 1, J1 ), LDA )
+ CALL DGEMM( 'N', 'N', I, M, M, ONE, B( 1, J1 ), LDB, IR,
+ $ LDST, ZERO, WORK, I )
+ CALL DLACPY( 'Full', I, M, WORK, I, B( 1, J1 ), LDB )
+ END IF
+*
+* Exit with INFO = 0 if swap was successfully performed.
+*
+ RETURN
+*
+ END IF
+*
+* Exit with INFO = 1 if swap was rejected.
+*
+ 70 CONTINUE
+*
+ INFO = 1
+ RETURN
+*
+* End of DTGEX2
+*
+ END