summaryrefslogtreecommitdiff
path: root/2.3-1/src/fortran/lapack/dsyev.f
diff options
context:
space:
mode:
Diffstat (limited to '2.3-1/src/fortran/lapack/dsyev.f')
-rw-r--r--2.3-1/src/fortran/lapack/dsyev.f211
1 files changed, 211 insertions, 0 deletions
diff --git a/2.3-1/src/fortran/lapack/dsyev.f b/2.3-1/src/fortran/lapack/dsyev.f
new file mode 100644
index 00000000..d73600a2
--- /dev/null
+++ b/2.3-1/src/fortran/lapack/dsyev.f
@@ -0,0 +1,211 @@
+ SUBROUTINE DSYEV( JOBZ, UPLO, N, A, LDA, W, WORK, LWORK, INFO )
+*
+* -- LAPACK driver routine (version 3.1) --
+* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd..
+* November 2006
+*
+* .. Scalar Arguments ..
+ CHARACTER JOBZ, UPLO
+ INTEGER INFO, LDA, LWORK, N
+* ..
+* .. Array Arguments ..
+ DOUBLE PRECISION A( LDA, * ), W( * ), WORK( * )
+* ..
+*
+* Purpose
+* =======
+*
+* DSYEV computes all eigenvalues and, optionally, eigenvectors of a
+* real symmetric matrix A.
+*
+* Arguments
+* =========
+*
+* JOBZ (input) CHARACTER*1
+* = 'N': Compute eigenvalues only;
+* = 'V': Compute eigenvalues and eigenvectors.
+*
+* UPLO (input) CHARACTER*1
+* = 'U': Upper triangle of A is stored;
+* = 'L': Lower triangle of A is stored.
+*
+* N (input) INTEGER
+* The order of the matrix A. N >= 0.
+*
+* A (input/output) DOUBLE PRECISION array, dimension (LDA, N)
+* On entry, the symmetric matrix A. If UPLO = 'U', the
+* leading N-by-N upper triangular part of A contains the
+* upper triangular part of the matrix A. If UPLO = 'L',
+* the leading N-by-N lower triangular part of A contains
+* the lower triangular part of the matrix A.
+* On exit, if JOBZ = 'V', then if INFO = 0, A contains the
+* orthonormal eigenvectors of the matrix A.
+* If JOBZ = 'N', then on exit the lower triangle (if UPLO='L')
+* or the upper triangle (if UPLO='U') of A, including the
+* diagonal, is destroyed.
+*
+* LDA (input) INTEGER
+* The leading dimension of the array A. LDA >= max(1,N).
+*
+* W (output) DOUBLE PRECISION array, dimension (N)
+* If INFO = 0, the eigenvalues in ascending order.
+*
+* WORK (workspace/output) DOUBLE PRECISION array, dimension (MAX(1,LWORK))
+* On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
+*
+* LWORK (input) INTEGER
+* The length of the array WORK. LWORK >= max(1,3*N-1).
+* For optimal efficiency, LWORK >= (NB+2)*N,
+* where NB is the blocksize for DSYTRD returned by ILAENV.
+*
+* If LWORK = -1, then a workspace query is assumed; the routine
+* only calculates the optimal size of the WORK array, returns
+* this value as the first entry of the WORK array, and no error
+* message related to LWORK is issued by XERBLA.
+*
+* INFO (output) INTEGER
+* = 0: successful exit
+* < 0: if INFO = -i, the i-th argument had an illegal value
+* > 0: if INFO = i, the algorithm failed to converge; i
+* off-diagonal elements of an intermediate tridiagonal
+* form did not converge to zero.
+*
+* =====================================================================
+*
+* .. Parameters ..
+ DOUBLE PRECISION ZERO, ONE
+ PARAMETER ( ZERO = 0.0D0, ONE = 1.0D0 )
+* ..
+* .. Local Scalars ..
+ LOGICAL LOWER, LQUERY, WANTZ
+ INTEGER IINFO, IMAX, INDE, INDTAU, INDWRK, ISCALE,
+ $ LLWORK, LWKOPT, NB
+ DOUBLE PRECISION ANRM, BIGNUM, EPS, RMAX, RMIN, SAFMIN, SIGMA,
+ $ SMLNUM
+* ..
+* .. External Functions ..
+ LOGICAL LSAME
+ INTEGER ILAENV
+ DOUBLE PRECISION DLAMCH, DLANSY
+ EXTERNAL LSAME, ILAENV, DLAMCH, DLANSY
+* ..
+* .. External Subroutines ..
+ EXTERNAL DLASCL, DORGTR, DSCAL, DSTEQR, DSTERF, DSYTRD,
+ $ XERBLA
+* ..
+* .. Intrinsic Functions ..
+ INTRINSIC MAX, SQRT
+* ..
+* .. Executable Statements ..
+*
+* Test the input parameters.
+*
+ WANTZ = LSAME( JOBZ, 'V' )
+ LOWER = LSAME( UPLO, 'L' )
+ LQUERY = ( LWORK.EQ.-1 )
+*
+ INFO = 0
+ IF( .NOT.( WANTZ .OR. LSAME( JOBZ, 'N' ) ) ) THEN
+ INFO = -1
+ ELSE IF( .NOT.( LOWER .OR. LSAME( UPLO, 'U' ) ) ) THEN
+ INFO = -2
+ ELSE IF( N.LT.0 ) THEN
+ INFO = -3
+ ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
+ INFO = -5
+ END IF
+*
+ IF( INFO.EQ.0 ) THEN
+ NB = ILAENV( 1, 'DSYTRD', UPLO, N, -1, -1, -1 )
+ LWKOPT = MAX( 1, ( NB+2 )*N )
+ WORK( 1 ) = LWKOPT
+*
+ IF( LWORK.LT.MAX( 1, 3*N-1 ) .AND. .NOT.LQUERY )
+ $ INFO = -8
+ END IF
+*
+ IF( INFO.NE.0 ) THEN
+ CALL XERBLA( 'DSYEV ', -INFO )
+ RETURN
+ ELSE IF( LQUERY ) THEN
+ RETURN
+ END IF
+*
+* Quick return if possible
+*
+ IF( N.EQ.0 ) THEN
+ RETURN
+ END IF
+*
+ IF( N.EQ.1 ) THEN
+ W( 1 ) = A( 1, 1 )
+ WORK( 1 ) = 2
+ IF( WANTZ )
+ $ A( 1, 1 ) = ONE
+ RETURN
+ END IF
+*
+* Get machine constants.
+*
+ SAFMIN = DLAMCH( 'Safe minimum' )
+ EPS = DLAMCH( 'Precision' )
+ SMLNUM = SAFMIN / EPS
+ BIGNUM = ONE / SMLNUM
+ RMIN = SQRT( SMLNUM )
+ RMAX = SQRT( BIGNUM )
+*
+* Scale matrix to allowable range, if necessary.
+*
+ ANRM = DLANSY( 'M', UPLO, N, A, LDA, WORK )
+ ISCALE = 0
+ IF( ANRM.GT.ZERO .AND. ANRM.LT.RMIN ) THEN
+ ISCALE = 1
+ SIGMA = RMIN / ANRM
+ ELSE IF( ANRM.GT.RMAX ) THEN
+ ISCALE = 1
+ SIGMA = RMAX / ANRM
+ END IF
+ IF( ISCALE.EQ.1 )
+ $ CALL DLASCL( UPLO, 0, 0, ONE, SIGMA, N, N, A, LDA, INFO )
+*
+* Call DSYTRD to reduce symmetric matrix to tridiagonal form.
+*
+ INDE = 1
+ INDTAU = INDE + N
+ INDWRK = INDTAU + N
+ LLWORK = LWORK - INDWRK + 1
+ CALL DSYTRD( UPLO, N, A, LDA, W, WORK( INDE ), WORK( INDTAU ),
+ $ WORK( INDWRK ), LLWORK, IINFO )
+*
+* For eigenvalues only, call DSTERF. For eigenvectors, first call
+* DORGTR to generate the orthogonal matrix, then call DSTEQR.
+*
+ IF( .NOT.WANTZ ) THEN
+ CALL DSTERF( N, W, WORK( INDE ), INFO )
+ ELSE
+ CALL DORGTR( UPLO, N, A, LDA, WORK( INDTAU ), WORK( INDWRK ),
+ $ LLWORK, IINFO )
+ CALL DSTEQR( JOBZ, N, W, WORK( INDE ), A, LDA, WORK( INDTAU ),
+ $ INFO )
+ END IF
+*
+* If matrix was scaled, then rescale eigenvalues appropriately.
+*
+ IF( ISCALE.EQ.1 ) THEN
+ IF( INFO.EQ.0 ) THEN
+ IMAX = N
+ ELSE
+ IMAX = INFO - 1
+ END IF
+ CALL DSCAL( IMAX, ONE / SIGMA, W, 1 )
+ END IF
+*
+* Set WORK(1) to optimal workspace size.
+*
+ WORK( 1 ) = LWKOPT
+*
+ RETURN
+*
+* End of DSYEV
+*
+ END