summaryrefslogtreecommitdiff
path: root/2.3-1/src/fortran/lapack/dspgst.f
diff options
context:
space:
mode:
Diffstat (limited to '2.3-1/src/fortran/lapack/dspgst.f')
-rw-r--r--2.3-1/src/fortran/lapack/dspgst.f208
1 files changed, 208 insertions, 0 deletions
diff --git a/2.3-1/src/fortran/lapack/dspgst.f b/2.3-1/src/fortran/lapack/dspgst.f
new file mode 100644
index 00000000..8e121a94
--- /dev/null
+++ b/2.3-1/src/fortran/lapack/dspgst.f
@@ -0,0 +1,208 @@
+ SUBROUTINE DSPGST( ITYPE, UPLO, N, AP, BP, INFO )
+*
+* -- LAPACK routine (version 3.1) --
+* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd..
+* November 2006
+*
+* .. Scalar Arguments ..
+ CHARACTER UPLO
+ INTEGER INFO, ITYPE, N
+* ..
+* .. Array Arguments ..
+ DOUBLE PRECISION AP( * ), BP( * )
+* ..
+*
+* Purpose
+* =======
+*
+* DSPGST reduces a real symmetric-definite generalized eigenproblem
+* to standard form, using packed storage.
+*
+* If ITYPE = 1, the problem is A*x = lambda*B*x,
+* and A is overwritten by inv(U**T)*A*inv(U) or inv(L)*A*inv(L**T)
+*
+* If ITYPE = 2 or 3, the problem is A*B*x = lambda*x or
+* B*A*x = lambda*x, and A is overwritten by U*A*U**T or L**T*A*L.
+*
+* B must have been previously factorized as U**T*U or L*L**T by DPPTRF.
+*
+* Arguments
+* =========
+*
+* ITYPE (input) INTEGER
+* = 1: compute inv(U**T)*A*inv(U) or inv(L)*A*inv(L**T);
+* = 2 or 3: compute U*A*U**T or L**T*A*L.
+*
+* UPLO (input) CHARACTER*1
+* = 'U': Upper triangle of A is stored and B is factored as
+* U**T*U;
+* = 'L': Lower triangle of A is stored and B is factored as
+* L*L**T.
+*
+* N (input) INTEGER
+* The order of the matrices A and B. N >= 0.
+*
+* AP (input/output) DOUBLE PRECISION array, dimension (N*(N+1)/2)
+* On entry, the upper or lower triangle of the symmetric matrix
+* A, packed columnwise in a linear array. The j-th column of A
+* is stored in the array AP as follows:
+* if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
+* if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = A(i,j) for j<=i<=n.
+*
+* On exit, if INFO = 0, the transformed matrix, stored in the
+* same format as A.
+*
+* BP (input) DOUBLE PRECISION array, dimension (N*(N+1)/2)
+* The triangular factor from the Cholesky factorization of B,
+* stored in the same format as A, as returned by DPPTRF.
+*
+* INFO (output) INTEGER
+* = 0: successful exit
+* < 0: if INFO = -i, the i-th argument had an illegal value
+*
+* =====================================================================
+*
+* .. Parameters ..
+ DOUBLE PRECISION ONE, HALF
+ PARAMETER ( ONE = 1.0D0, HALF = 0.5D0 )
+* ..
+* .. Local Scalars ..
+ LOGICAL UPPER
+ INTEGER J, J1, J1J1, JJ, K, K1, K1K1, KK
+ DOUBLE PRECISION AJJ, AKK, BJJ, BKK, CT
+* ..
+* .. External Subroutines ..
+ EXTERNAL DAXPY, DSCAL, DSPMV, DSPR2, DTPMV, DTPSV,
+ $ XERBLA
+* ..
+* .. External Functions ..
+ LOGICAL LSAME
+ DOUBLE PRECISION DDOT
+ EXTERNAL LSAME, DDOT
+* ..
+* .. Executable Statements ..
+*
+* Test the input parameters.
+*
+ INFO = 0
+ UPPER = LSAME( UPLO, 'U' )
+ IF( ITYPE.LT.1 .OR. ITYPE.GT.3 ) THEN
+ INFO = -1
+ ELSE IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
+ INFO = -2
+ ELSE IF( N.LT.0 ) THEN
+ INFO = -3
+ END IF
+ IF( INFO.NE.0 ) THEN
+ CALL XERBLA( 'DSPGST', -INFO )
+ RETURN
+ END IF
+*
+ IF( ITYPE.EQ.1 ) THEN
+ IF( UPPER ) THEN
+*
+* Compute inv(U')*A*inv(U)
+*
+* J1 and JJ are the indices of A(1,j) and A(j,j)
+*
+ JJ = 0
+ DO 10 J = 1, N
+ J1 = JJ + 1
+ JJ = JJ + J
+*
+* Compute the j-th column of the upper triangle of A
+*
+ BJJ = BP( JJ )
+ CALL DTPSV( UPLO, 'Transpose', 'Nonunit', J, BP,
+ $ AP( J1 ), 1 )
+ CALL DSPMV( UPLO, J-1, -ONE, AP, BP( J1 ), 1, ONE,
+ $ AP( J1 ), 1 )
+ CALL DSCAL( J-1, ONE / BJJ, AP( J1 ), 1 )
+ AP( JJ ) = ( AP( JJ )-DDOT( J-1, AP( J1 ), 1, BP( J1 ),
+ $ 1 ) ) / BJJ
+ 10 CONTINUE
+ ELSE
+*
+* Compute inv(L)*A*inv(L')
+*
+* KK and K1K1 are the indices of A(k,k) and A(k+1,k+1)
+*
+ KK = 1
+ DO 20 K = 1, N
+ K1K1 = KK + N - K + 1
+*
+* Update the lower triangle of A(k:n,k:n)
+*
+ AKK = AP( KK )
+ BKK = BP( KK )
+ AKK = AKK / BKK**2
+ AP( KK ) = AKK
+ IF( K.LT.N ) THEN
+ CALL DSCAL( N-K, ONE / BKK, AP( KK+1 ), 1 )
+ CT = -HALF*AKK
+ CALL DAXPY( N-K, CT, BP( KK+1 ), 1, AP( KK+1 ), 1 )
+ CALL DSPR2( UPLO, N-K, -ONE, AP( KK+1 ), 1,
+ $ BP( KK+1 ), 1, AP( K1K1 ) )
+ CALL DAXPY( N-K, CT, BP( KK+1 ), 1, AP( KK+1 ), 1 )
+ CALL DTPSV( UPLO, 'No transpose', 'Non-unit', N-K,
+ $ BP( K1K1 ), AP( KK+1 ), 1 )
+ END IF
+ KK = K1K1
+ 20 CONTINUE
+ END IF
+ ELSE
+ IF( UPPER ) THEN
+*
+* Compute U*A*U'
+*
+* K1 and KK are the indices of A(1,k) and A(k,k)
+*
+ KK = 0
+ DO 30 K = 1, N
+ K1 = KK + 1
+ KK = KK + K
+*
+* Update the upper triangle of A(1:k,1:k)
+*
+ AKK = AP( KK )
+ BKK = BP( KK )
+ CALL DTPMV( UPLO, 'No transpose', 'Non-unit', K-1, BP,
+ $ AP( K1 ), 1 )
+ CT = HALF*AKK
+ CALL DAXPY( K-1, CT, BP( K1 ), 1, AP( K1 ), 1 )
+ CALL DSPR2( UPLO, K-1, ONE, AP( K1 ), 1, BP( K1 ), 1,
+ $ AP )
+ CALL DAXPY( K-1, CT, BP( K1 ), 1, AP( K1 ), 1 )
+ CALL DSCAL( K-1, BKK, AP( K1 ), 1 )
+ AP( KK ) = AKK*BKK**2
+ 30 CONTINUE
+ ELSE
+*
+* Compute L'*A*L
+*
+* JJ and J1J1 are the indices of A(j,j) and A(j+1,j+1)
+*
+ JJ = 1
+ DO 40 J = 1, N
+ J1J1 = JJ + N - J + 1
+*
+* Compute the j-th column of the lower triangle of A
+*
+ AJJ = AP( JJ )
+ BJJ = BP( JJ )
+ AP( JJ ) = AJJ*BJJ + DDOT( N-J, AP( JJ+1 ), 1,
+ $ BP( JJ+1 ), 1 )
+ CALL DSCAL( N-J, BJJ, AP( JJ+1 ), 1 )
+ CALL DSPMV( UPLO, N-J, ONE, AP( J1J1 ), BP( JJ+1 ), 1,
+ $ ONE, AP( JJ+1 ), 1 )
+ CALL DTPMV( UPLO, 'Transpose', 'Non-unit', N-J+1,
+ $ BP( JJ ), AP( JJ ), 1 )
+ JJ = J1J1
+ 40 CONTINUE
+ END IF
+ END IF
+ RETURN
+*
+* End of DSPGST
+*
+ END