summaryrefslogtreecommitdiff
path: root/2.3-1/src/fortran/lapack/dpotrs.f
diff options
context:
space:
mode:
Diffstat (limited to '2.3-1/src/fortran/lapack/dpotrs.f')
-rw-r--r--2.3-1/src/fortran/lapack/dpotrs.f132
1 files changed, 132 insertions, 0 deletions
diff --git a/2.3-1/src/fortran/lapack/dpotrs.f b/2.3-1/src/fortran/lapack/dpotrs.f
new file mode 100644
index 00000000..0273655e
--- /dev/null
+++ b/2.3-1/src/fortran/lapack/dpotrs.f
@@ -0,0 +1,132 @@
+ SUBROUTINE DPOTRS( UPLO, N, NRHS, A, LDA, B, LDB, INFO )
+*
+* -- LAPACK routine (version 3.1) --
+* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd..
+* November 2006
+*
+* .. Scalar Arguments ..
+ CHARACTER UPLO
+ INTEGER INFO, LDA, LDB, N, NRHS
+* ..
+* .. Array Arguments ..
+ DOUBLE PRECISION A( LDA, * ), B( LDB, * )
+* ..
+*
+* Purpose
+* =======
+*
+* DPOTRS solves a system of linear equations A*X = B with a symmetric
+* positive definite matrix A using the Cholesky factorization
+* A = U**T*U or A = L*L**T computed by DPOTRF.
+*
+* Arguments
+* =========
+*
+* UPLO (input) CHARACTER*1
+* = 'U': Upper triangle of A is stored;
+* = 'L': Lower triangle of A is stored.
+*
+* N (input) INTEGER
+* The order of the matrix A. N >= 0.
+*
+* NRHS (input) INTEGER
+* The number of right hand sides, i.e., the number of columns
+* of the matrix B. NRHS >= 0.
+*
+* A (input) DOUBLE PRECISION array, dimension (LDA,N)
+* The triangular factor U or L from the Cholesky factorization
+* A = U**T*U or A = L*L**T, as computed by DPOTRF.
+*
+* LDA (input) INTEGER
+* The leading dimension of the array A. LDA >= max(1,N).
+*
+* B (input/output) DOUBLE PRECISION array, dimension (LDB,NRHS)
+* On entry, the right hand side matrix B.
+* On exit, the solution matrix X.
+*
+* LDB (input) INTEGER
+* The leading dimension of the array B. LDB >= max(1,N).
+*
+* INFO (output) INTEGER
+* = 0: successful exit
+* < 0: if INFO = -i, the i-th argument had an illegal value
+*
+* =====================================================================
+*
+* .. Parameters ..
+ DOUBLE PRECISION ONE
+ PARAMETER ( ONE = 1.0D+0 )
+* ..
+* .. Local Scalars ..
+ LOGICAL UPPER
+* ..
+* .. External Functions ..
+ LOGICAL LSAME
+ EXTERNAL LSAME
+* ..
+* .. External Subroutines ..
+ EXTERNAL DTRSM, XERBLA
+* ..
+* .. Intrinsic Functions ..
+ INTRINSIC MAX
+* ..
+* .. Executable Statements ..
+*
+* Test the input parameters.
+*
+ INFO = 0
+ UPPER = LSAME( UPLO, 'U' )
+ IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
+ INFO = -1
+ ELSE IF( N.LT.0 ) THEN
+ INFO = -2
+ ELSE IF( NRHS.LT.0 ) THEN
+ INFO = -3
+ ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
+ INFO = -5
+ ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
+ INFO = -7
+ END IF
+ IF( INFO.NE.0 ) THEN
+ CALL XERBLA( 'DPOTRS', -INFO )
+ RETURN
+ END IF
+*
+* Quick return if possible
+*
+ IF( N.EQ.0 .OR. NRHS.EQ.0 )
+ $ RETURN
+*
+ IF( UPPER ) THEN
+*
+* Solve A*X = B where A = U'*U.
+*
+* Solve U'*X = B, overwriting B with X.
+*
+ CALL DTRSM( 'Left', 'Upper', 'Transpose', 'Non-unit', N, NRHS,
+ $ ONE, A, LDA, B, LDB )
+*
+* Solve U*X = B, overwriting B with X.
+*
+ CALL DTRSM( 'Left', 'Upper', 'No transpose', 'Non-unit', N,
+ $ NRHS, ONE, A, LDA, B, LDB )
+ ELSE
+*
+* Solve A*X = B where A = L*L'.
+*
+* Solve L*X = B, overwriting B with X.
+*
+ CALL DTRSM( 'Left', 'Lower', 'No transpose', 'Non-unit', N,
+ $ NRHS, ONE, A, LDA, B, LDB )
+*
+* Solve L'*X = B, overwriting B with X.
+*
+ CALL DTRSM( 'Left', 'Lower', 'Transpose', 'Non-unit', N, NRHS,
+ $ ONE, A, LDA, B, LDB )
+ END IF
+*
+ RETURN
+*
+* End of DPOTRS
+*
+ END