summaryrefslogtreecommitdiff
path: root/2.3-1/src/fortran/lapack/dormlq.f
diff options
context:
space:
mode:
Diffstat (limited to '2.3-1/src/fortran/lapack/dormlq.f')
-rw-r--r--2.3-1/src/fortran/lapack/dormlq.f267
1 files changed, 267 insertions, 0 deletions
diff --git a/2.3-1/src/fortran/lapack/dormlq.f b/2.3-1/src/fortran/lapack/dormlq.f
new file mode 100644
index 00000000..f0c68ef2
--- /dev/null
+++ b/2.3-1/src/fortran/lapack/dormlq.f
@@ -0,0 +1,267 @@
+ SUBROUTINE DORMLQ( SIDE, TRANS, M, N, K, A, LDA, TAU, C, LDC,
+ $ WORK, LWORK, INFO )
+*
+* -- LAPACK routine (version 3.1) --
+* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd..
+* November 2006
+*
+* .. Scalar Arguments ..
+ CHARACTER SIDE, TRANS
+ INTEGER INFO, K, LDA, LDC, LWORK, M, N
+* ..
+* .. Array Arguments ..
+ DOUBLE PRECISION A( LDA, * ), C( LDC, * ), TAU( * ), WORK( * )
+* ..
+*
+* Purpose
+* =======
+*
+* DORMLQ overwrites the general real M-by-N matrix C with
+*
+* SIDE = 'L' SIDE = 'R'
+* TRANS = 'N': Q * C C * Q
+* TRANS = 'T': Q**T * C C * Q**T
+*
+* where Q is a real orthogonal matrix defined as the product of k
+* elementary reflectors
+*
+* Q = H(k) . . . H(2) H(1)
+*
+* as returned by DGELQF. Q is of order M if SIDE = 'L' and of order N
+* if SIDE = 'R'.
+*
+* Arguments
+* =========
+*
+* SIDE (input) CHARACTER*1
+* = 'L': apply Q or Q**T from the Left;
+* = 'R': apply Q or Q**T from the Right.
+*
+* TRANS (input) CHARACTER*1
+* = 'N': No transpose, apply Q;
+* = 'T': Transpose, apply Q**T.
+*
+* M (input) INTEGER
+* The number of rows of the matrix C. M >= 0.
+*
+* N (input) INTEGER
+* The number of columns of the matrix C. N >= 0.
+*
+* K (input) INTEGER
+* The number of elementary reflectors whose product defines
+* the matrix Q.
+* If SIDE = 'L', M >= K >= 0;
+* if SIDE = 'R', N >= K >= 0.
+*
+* A (input) DOUBLE PRECISION array, dimension
+* (LDA,M) if SIDE = 'L',
+* (LDA,N) if SIDE = 'R'
+* The i-th row must contain the vector which defines the
+* elementary reflector H(i), for i = 1,2,...,k, as returned by
+* DGELQF in the first k rows of its array argument A.
+* A is modified by the routine but restored on exit.
+*
+* LDA (input) INTEGER
+* The leading dimension of the array A. LDA >= max(1,K).
+*
+* TAU (input) DOUBLE PRECISION array, dimension (K)
+* TAU(i) must contain the scalar factor of the elementary
+* reflector H(i), as returned by DGELQF.
+*
+* C (input/output) DOUBLE PRECISION array, dimension (LDC,N)
+* On entry, the M-by-N matrix C.
+* On exit, C is overwritten by Q*C or Q**T*C or C*Q**T or C*Q.
+*
+* LDC (input) INTEGER
+* The leading dimension of the array C. LDC >= max(1,M).
+*
+* WORK (workspace/output) DOUBLE PRECISION array, dimension (MAX(1,LWORK))
+* On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
+*
+* LWORK (input) INTEGER
+* The dimension of the array WORK.
+* If SIDE = 'L', LWORK >= max(1,N);
+* if SIDE = 'R', LWORK >= max(1,M).
+* For optimum performance LWORK >= N*NB if SIDE = 'L', and
+* LWORK >= M*NB if SIDE = 'R', where NB is the optimal
+* blocksize.
+*
+* If LWORK = -1, then a workspace query is assumed; the routine
+* only calculates the optimal size of the WORK array, returns
+* this value as the first entry of the WORK array, and no error
+* message related to LWORK is issued by XERBLA.
+*
+* INFO (output) INTEGER
+* = 0: successful exit
+* < 0: if INFO = -i, the i-th argument had an illegal value
+*
+* =====================================================================
+*
+* .. Parameters ..
+ INTEGER NBMAX, LDT
+ PARAMETER ( NBMAX = 64, LDT = NBMAX+1 )
+* ..
+* .. Local Scalars ..
+ LOGICAL LEFT, LQUERY, NOTRAN
+ CHARACTER TRANST
+ INTEGER I, I1, I2, I3, IB, IC, IINFO, IWS, JC, LDWORK,
+ $ LWKOPT, MI, NB, NBMIN, NI, NQ, NW
+* ..
+* .. Local Arrays ..
+ DOUBLE PRECISION T( LDT, NBMAX )
+* ..
+* .. External Functions ..
+ LOGICAL LSAME
+ INTEGER ILAENV
+ EXTERNAL LSAME, ILAENV
+* ..
+* .. External Subroutines ..
+ EXTERNAL DLARFB, DLARFT, DORML2, XERBLA
+* ..
+* .. Intrinsic Functions ..
+ INTRINSIC MAX, MIN
+* ..
+* .. Executable Statements ..
+*
+* Test the input arguments
+*
+ INFO = 0
+ LEFT = LSAME( SIDE, 'L' )
+ NOTRAN = LSAME( TRANS, 'N' )
+ LQUERY = ( LWORK.EQ.-1 )
+*
+* NQ is the order of Q and NW is the minimum dimension of WORK
+*
+ IF( LEFT ) THEN
+ NQ = M
+ NW = N
+ ELSE
+ NQ = N
+ NW = M
+ END IF
+ IF( .NOT.LEFT .AND. .NOT.LSAME( SIDE, 'R' ) ) THEN
+ INFO = -1
+ ELSE IF( .NOT.NOTRAN .AND. .NOT.LSAME( TRANS, 'T' ) ) THEN
+ INFO = -2
+ ELSE IF( M.LT.0 ) THEN
+ INFO = -3
+ ELSE IF( N.LT.0 ) THEN
+ INFO = -4
+ ELSE IF( K.LT.0 .OR. K.GT.NQ ) THEN
+ INFO = -5
+ ELSE IF( LDA.LT.MAX( 1, K ) ) THEN
+ INFO = -7
+ ELSE IF( LDC.LT.MAX( 1, M ) ) THEN
+ INFO = -10
+ ELSE IF( LWORK.LT.MAX( 1, NW ) .AND. .NOT.LQUERY ) THEN
+ INFO = -12
+ END IF
+*
+ IF( INFO.EQ.0 ) THEN
+*
+* Determine the block size. NB may be at most NBMAX, where NBMAX
+* is used to define the local array T.
+*
+ NB = MIN( NBMAX, ILAENV( 1, 'DORMLQ', SIDE // TRANS, M, N, K,
+ $ -1 ) )
+ LWKOPT = MAX( 1, NW )*NB
+ WORK( 1 ) = LWKOPT
+ END IF
+*
+ IF( INFO.NE.0 ) THEN
+ CALL XERBLA( 'DORMLQ', -INFO )
+ RETURN
+ ELSE IF( LQUERY ) THEN
+ RETURN
+ END IF
+*
+* Quick return if possible
+*
+ IF( M.EQ.0 .OR. N.EQ.0 .OR. K.EQ.0 ) THEN
+ WORK( 1 ) = 1
+ RETURN
+ END IF
+*
+ NBMIN = 2
+ LDWORK = NW
+ IF( NB.GT.1 .AND. NB.LT.K ) THEN
+ IWS = NW*NB
+ IF( LWORK.LT.IWS ) THEN
+ NB = LWORK / LDWORK
+ NBMIN = MAX( 2, ILAENV( 2, 'DORMLQ', SIDE // TRANS, M, N, K,
+ $ -1 ) )
+ END IF
+ ELSE
+ IWS = NW
+ END IF
+*
+ IF( NB.LT.NBMIN .OR. NB.GE.K ) THEN
+*
+* Use unblocked code
+*
+ CALL DORML2( SIDE, TRANS, M, N, K, A, LDA, TAU, C, LDC, WORK,
+ $ IINFO )
+ ELSE
+*
+* Use blocked code
+*
+ IF( ( LEFT .AND. NOTRAN ) .OR.
+ $ ( .NOT.LEFT .AND. .NOT.NOTRAN ) ) THEN
+ I1 = 1
+ I2 = K
+ I3 = NB
+ ELSE
+ I1 = ( ( K-1 ) / NB )*NB + 1
+ I2 = 1
+ I3 = -NB
+ END IF
+*
+ IF( LEFT ) THEN
+ NI = N
+ JC = 1
+ ELSE
+ MI = M
+ IC = 1
+ END IF
+*
+ IF( NOTRAN ) THEN
+ TRANST = 'T'
+ ELSE
+ TRANST = 'N'
+ END IF
+*
+ DO 10 I = I1, I2, I3
+ IB = MIN( NB, K-I+1 )
+*
+* Form the triangular factor of the block reflector
+* H = H(i) H(i+1) . . . H(i+ib-1)
+*
+ CALL DLARFT( 'Forward', 'Rowwise', NQ-I+1, IB, A( I, I ),
+ $ LDA, TAU( I ), T, LDT )
+ IF( LEFT ) THEN
+*
+* H or H' is applied to C(i:m,1:n)
+*
+ MI = M - I + 1
+ IC = I
+ ELSE
+*
+* H or H' is applied to C(1:m,i:n)
+*
+ NI = N - I + 1
+ JC = I
+ END IF
+*
+* Apply H or H'
+*
+ CALL DLARFB( SIDE, TRANST, 'Forward', 'Rowwise', MI, NI, IB,
+ $ A( I, I ), LDA, T, LDT, C( IC, JC ), LDC, WORK,
+ $ LDWORK )
+ 10 CONTINUE
+ END IF
+ WORK( 1 ) = LWKOPT
+ RETURN
+*
+* End of DORMLQ
+*
+ END