summaryrefslogtreecommitdiff
path: root/2.3-1/src/fortran/lapack/dlasy2.f
diff options
context:
space:
mode:
Diffstat (limited to '2.3-1/src/fortran/lapack/dlasy2.f')
-rw-r--r--2.3-1/src/fortran/lapack/dlasy2.f381
1 files changed, 381 insertions, 0 deletions
diff --git a/2.3-1/src/fortran/lapack/dlasy2.f b/2.3-1/src/fortran/lapack/dlasy2.f
new file mode 100644
index 00000000..3ff12070
--- /dev/null
+++ b/2.3-1/src/fortran/lapack/dlasy2.f
@@ -0,0 +1,381 @@
+ SUBROUTINE DLASY2( LTRANL, LTRANR, ISGN, N1, N2, TL, LDTL, TR,
+ $ LDTR, B, LDB, SCALE, X, LDX, XNORM, INFO )
+*
+* -- LAPACK auxiliary routine (version 3.1) --
+* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd..
+* November 2006
+*
+* .. Scalar Arguments ..
+ LOGICAL LTRANL, LTRANR
+ INTEGER INFO, ISGN, LDB, LDTL, LDTR, LDX, N1, N2
+ DOUBLE PRECISION SCALE, XNORM
+* ..
+* .. Array Arguments ..
+ DOUBLE PRECISION B( LDB, * ), TL( LDTL, * ), TR( LDTR, * ),
+ $ X( LDX, * )
+* ..
+*
+* Purpose
+* =======
+*
+* DLASY2 solves for the N1 by N2 matrix X, 1 <= N1,N2 <= 2, in
+*
+* op(TL)*X + ISGN*X*op(TR) = SCALE*B,
+*
+* where TL is N1 by N1, TR is N2 by N2, B is N1 by N2, and ISGN = 1 or
+* -1. op(T) = T or T', where T' denotes the transpose of T.
+*
+* Arguments
+* =========
+*
+* LTRANL (input) LOGICAL
+* On entry, LTRANL specifies the op(TL):
+* = .FALSE., op(TL) = TL,
+* = .TRUE., op(TL) = TL'.
+*
+* LTRANR (input) LOGICAL
+* On entry, LTRANR specifies the op(TR):
+* = .FALSE., op(TR) = TR,
+* = .TRUE., op(TR) = TR'.
+*
+* ISGN (input) INTEGER
+* On entry, ISGN specifies the sign of the equation
+* as described before. ISGN may only be 1 or -1.
+*
+* N1 (input) INTEGER
+* On entry, N1 specifies the order of matrix TL.
+* N1 may only be 0, 1 or 2.
+*
+* N2 (input) INTEGER
+* On entry, N2 specifies the order of matrix TR.
+* N2 may only be 0, 1 or 2.
+*
+* TL (input) DOUBLE PRECISION array, dimension (LDTL,2)
+* On entry, TL contains an N1 by N1 matrix.
+*
+* LDTL (input) INTEGER
+* The leading dimension of the matrix TL. LDTL >= max(1,N1).
+*
+* TR (input) DOUBLE PRECISION array, dimension (LDTR,2)
+* On entry, TR contains an N2 by N2 matrix.
+*
+* LDTR (input) INTEGER
+* The leading dimension of the matrix TR. LDTR >= max(1,N2).
+*
+* B (input) DOUBLE PRECISION array, dimension (LDB,2)
+* On entry, the N1 by N2 matrix B contains the right-hand
+* side of the equation.
+*
+* LDB (input) INTEGER
+* The leading dimension of the matrix B. LDB >= max(1,N1).
+*
+* SCALE (output) DOUBLE PRECISION
+* On exit, SCALE contains the scale factor. SCALE is chosen
+* less than or equal to 1 to prevent the solution overflowing.
+*
+* X (output) DOUBLE PRECISION array, dimension (LDX,2)
+* On exit, X contains the N1 by N2 solution.
+*
+* LDX (input) INTEGER
+* The leading dimension of the matrix X. LDX >= max(1,N1).
+*
+* XNORM (output) DOUBLE PRECISION
+* On exit, XNORM is the infinity-norm of the solution.
+*
+* INFO (output) INTEGER
+* On exit, INFO is set to
+* 0: successful exit.
+* 1: TL and TR have too close eigenvalues, so TL or
+* TR is perturbed to get a nonsingular equation.
+* NOTE: In the interests of speed, this routine does not
+* check the inputs for errors.
+*
+* =====================================================================
+*
+* .. Parameters ..
+ DOUBLE PRECISION ZERO, ONE
+ PARAMETER ( ZERO = 0.0D+0, ONE = 1.0D+0 )
+ DOUBLE PRECISION TWO, HALF, EIGHT
+ PARAMETER ( TWO = 2.0D+0, HALF = 0.5D+0, EIGHT = 8.0D+0 )
+* ..
+* .. Local Scalars ..
+ LOGICAL BSWAP, XSWAP
+ INTEGER I, IP, IPIV, IPSV, J, JP, JPSV, K
+ DOUBLE PRECISION BET, EPS, GAM, L21, SGN, SMIN, SMLNUM, TAU1,
+ $ TEMP, U11, U12, U22, XMAX
+* ..
+* .. Local Arrays ..
+ LOGICAL BSWPIV( 4 ), XSWPIV( 4 )
+ INTEGER JPIV( 4 ), LOCL21( 4 ), LOCU12( 4 ),
+ $ LOCU22( 4 )
+ DOUBLE PRECISION BTMP( 4 ), T16( 4, 4 ), TMP( 4 ), X2( 2 )
+* ..
+* .. External Functions ..
+ INTEGER IDAMAX
+ DOUBLE PRECISION DLAMCH
+ EXTERNAL IDAMAX, DLAMCH
+* ..
+* .. External Subroutines ..
+ EXTERNAL DCOPY, DSWAP
+* ..
+* .. Intrinsic Functions ..
+ INTRINSIC ABS, MAX
+* ..
+* .. Data statements ..
+ DATA LOCU12 / 3, 4, 1, 2 / , LOCL21 / 2, 1, 4, 3 / ,
+ $ LOCU22 / 4, 3, 2, 1 /
+ DATA XSWPIV / .FALSE., .FALSE., .TRUE., .TRUE. /
+ DATA BSWPIV / .FALSE., .TRUE., .FALSE., .TRUE. /
+* ..
+* .. Executable Statements ..
+*
+* Do not check the input parameters for errors
+*
+ INFO = 0
+*
+* Quick return if possible
+*
+ IF( N1.EQ.0 .OR. N2.EQ.0 )
+ $ RETURN
+*
+* Set constants to control overflow
+*
+ EPS = DLAMCH( 'P' )
+ SMLNUM = DLAMCH( 'S' ) / EPS
+ SGN = ISGN
+*
+ K = N1 + N1 + N2 - 2
+ GO TO ( 10, 20, 30, 50 )K
+*
+* 1 by 1: TL11*X + SGN*X*TR11 = B11
+*
+ 10 CONTINUE
+ TAU1 = TL( 1, 1 ) + SGN*TR( 1, 1 )
+ BET = ABS( TAU1 )
+ IF( BET.LE.SMLNUM ) THEN
+ TAU1 = SMLNUM
+ BET = SMLNUM
+ INFO = 1
+ END IF
+*
+ SCALE = ONE
+ GAM = ABS( B( 1, 1 ) )
+ IF( SMLNUM*GAM.GT.BET )
+ $ SCALE = ONE / GAM
+*
+ X( 1, 1 ) = ( B( 1, 1 )*SCALE ) / TAU1
+ XNORM = ABS( X( 1, 1 ) )
+ RETURN
+*
+* 1 by 2:
+* TL11*[X11 X12] + ISGN*[X11 X12]*op[TR11 TR12] = [B11 B12]
+* [TR21 TR22]
+*
+ 20 CONTINUE
+*
+ SMIN = MAX( EPS*MAX( ABS( TL( 1, 1 ) ), ABS( TR( 1, 1 ) ),
+ $ ABS( TR( 1, 2 ) ), ABS( TR( 2, 1 ) ), ABS( TR( 2, 2 ) ) ),
+ $ SMLNUM )
+ TMP( 1 ) = TL( 1, 1 ) + SGN*TR( 1, 1 )
+ TMP( 4 ) = TL( 1, 1 ) + SGN*TR( 2, 2 )
+ IF( LTRANR ) THEN
+ TMP( 2 ) = SGN*TR( 2, 1 )
+ TMP( 3 ) = SGN*TR( 1, 2 )
+ ELSE
+ TMP( 2 ) = SGN*TR( 1, 2 )
+ TMP( 3 ) = SGN*TR( 2, 1 )
+ END IF
+ BTMP( 1 ) = B( 1, 1 )
+ BTMP( 2 ) = B( 1, 2 )
+ GO TO 40
+*
+* 2 by 1:
+* op[TL11 TL12]*[X11] + ISGN* [X11]*TR11 = [B11]
+* [TL21 TL22] [X21] [X21] [B21]
+*
+ 30 CONTINUE
+ SMIN = MAX( EPS*MAX( ABS( TR( 1, 1 ) ), ABS( TL( 1, 1 ) ),
+ $ ABS( TL( 1, 2 ) ), ABS( TL( 2, 1 ) ), ABS( TL( 2, 2 ) ) ),
+ $ SMLNUM )
+ TMP( 1 ) = TL( 1, 1 ) + SGN*TR( 1, 1 )
+ TMP( 4 ) = TL( 2, 2 ) + SGN*TR( 1, 1 )
+ IF( LTRANL ) THEN
+ TMP( 2 ) = TL( 1, 2 )
+ TMP( 3 ) = TL( 2, 1 )
+ ELSE
+ TMP( 2 ) = TL( 2, 1 )
+ TMP( 3 ) = TL( 1, 2 )
+ END IF
+ BTMP( 1 ) = B( 1, 1 )
+ BTMP( 2 ) = B( 2, 1 )
+ 40 CONTINUE
+*
+* Solve 2 by 2 system using complete pivoting.
+* Set pivots less than SMIN to SMIN.
+*
+ IPIV = IDAMAX( 4, TMP, 1 )
+ U11 = TMP( IPIV )
+ IF( ABS( U11 ).LE.SMIN ) THEN
+ INFO = 1
+ U11 = SMIN
+ END IF
+ U12 = TMP( LOCU12( IPIV ) )
+ L21 = TMP( LOCL21( IPIV ) ) / U11
+ U22 = TMP( LOCU22( IPIV ) ) - U12*L21
+ XSWAP = XSWPIV( IPIV )
+ BSWAP = BSWPIV( IPIV )
+ IF( ABS( U22 ).LE.SMIN ) THEN
+ INFO = 1
+ U22 = SMIN
+ END IF
+ IF( BSWAP ) THEN
+ TEMP = BTMP( 2 )
+ BTMP( 2 ) = BTMP( 1 ) - L21*TEMP
+ BTMP( 1 ) = TEMP
+ ELSE
+ BTMP( 2 ) = BTMP( 2 ) - L21*BTMP( 1 )
+ END IF
+ SCALE = ONE
+ IF( ( TWO*SMLNUM )*ABS( BTMP( 2 ) ).GT.ABS( U22 ) .OR.
+ $ ( TWO*SMLNUM )*ABS( BTMP( 1 ) ).GT.ABS( U11 ) ) THEN
+ SCALE = HALF / MAX( ABS( BTMP( 1 ) ), ABS( BTMP( 2 ) ) )
+ BTMP( 1 ) = BTMP( 1 )*SCALE
+ BTMP( 2 ) = BTMP( 2 )*SCALE
+ END IF
+ X2( 2 ) = BTMP( 2 ) / U22
+ X2( 1 ) = BTMP( 1 ) / U11 - ( U12 / U11 )*X2( 2 )
+ IF( XSWAP ) THEN
+ TEMP = X2( 2 )
+ X2( 2 ) = X2( 1 )
+ X2( 1 ) = TEMP
+ END IF
+ X( 1, 1 ) = X2( 1 )
+ IF( N1.EQ.1 ) THEN
+ X( 1, 2 ) = X2( 2 )
+ XNORM = ABS( X( 1, 1 ) ) + ABS( X( 1, 2 ) )
+ ELSE
+ X( 2, 1 ) = X2( 2 )
+ XNORM = MAX( ABS( X( 1, 1 ) ), ABS( X( 2, 1 ) ) )
+ END IF
+ RETURN
+*
+* 2 by 2:
+* op[TL11 TL12]*[X11 X12] +ISGN* [X11 X12]*op[TR11 TR12] = [B11 B12]
+* [TL21 TL22] [X21 X22] [X21 X22] [TR21 TR22] [B21 B22]
+*
+* Solve equivalent 4 by 4 system using complete pivoting.
+* Set pivots less than SMIN to SMIN.
+*
+ 50 CONTINUE
+ SMIN = MAX( ABS( TR( 1, 1 ) ), ABS( TR( 1, 2 ) ),
+ $ ABS( TR( 2, 1 ) ), ABS( TR( 2, 2 ) ) )
+ SMIN = MAX( SMIN, ABS( TL( 1, 1 ) ), ABS( TL( 1, 2 ) ),
+ $ ABS( TL( 2, 1 ) ), ABS( TL( 2, 2 ) ) )
+ SMIN = MAX( EPS*SMIN, SMLNUM )
+ BTMP( 1 ) = ZERO
+ CALL DCOPY( 16, BTMP, 0, T16, 1 )
+ T16( 1, 1 ) = TL( 1, 1 ) + SGN*TR( 1, 1 )
+ T16( 2, 2 ) = TL( 2, 2 ) + SGN*TR( 1, 1 )
+ T16( 3, 3 ) = TL( 1, 1 ) + SGN*TR( 2, 2 )
+ T16( 4, 4 ) = TL( 2, 2 ) + SGN*TR( 2, 2 )
+ IF( LTRANL ) THEN
+ T16( 1, 2 ) = TL( 2, 1 )
+ T16( 2, 1 ) = TL( 1, 2 )
+ T16( 3, 4 ) = TL( 2, 1 )
+ T16( 4, 3 ) = TL( 1, 2 )
+ ELSE
+ T16( 1, 2 ) = TL( 1, 2 )
+ T16( 2, 1 ) = TL( 2, 1 )
+ T16( 3, 4 ) = TL( 1, 2 )
+ T16( 4, 3 ) = TL( 2, 1 )
+ END IF
+ IF( LTRANR ) THEN
+ T16( 1, 3 ) = SGN*TR( 1, 2 )
+ T16( 2, 4 ) = SGN*TR( 1, 2 )
+ T16( 3, 1 ) = SGN*TR( 2, 1 )
+ T16( 4, 2 ) = SGN*TR( 2, 1 )
+ ELSE
+ T16( 1, 3 ) = SGN*TR( 2, 1 )
+ T16( 2, 4 ) = SGN*TR( 2, 1 )
+ T16( 3, 1 ) = SGN*TR( 1, 2 )
+ T16( 4, 2 ) = SGN*TR( 1, 2 )
+ END IF
+ BTMP( 1 ) = B( 1, 1 )
+ BTMP( 2 ) = B( 2, 1 )
+ BTMP( 3 ) = B( 1, 2 )
+ BTMP( 4 ) = B( 2, 2 )
+*
+* Perform elimination
+*
+ DO 100 I = 1, 3
+ XMAX = ZERO
+ DO 70 IP = I, 4
+ DO 60 JP = I, 4
+ IF( ABS( T16( IP, JP ) ).GE.XMAX ) THEN
+ XMAX = ABS( T16( IP, JP ) )
+ IPSV = IP
+ JPSV = JP
+ END IF
+ 60 CONTINUE
+ 70 CONTINUE
+ IF( IPSV.NE.I ) THEN
+ CALL DSWAP( 4, T16( IPSV, 1 ), 4, T16( I, 1 ), 4 )
+ TEMP = BTMP( I )
+ BTMP( I ) = BTMP( IPSV )
+ BTMP( IPSV ) = TEMP
+ END IF
+ IF( JPSV.NE.I )
+ $ CALL DSWAP( 4, T16( 1, JPSV ), 1, T16( 1, I ), 1 )
+ JPIV( I ) = JPSV
+ IF( ABS( T16( I, I ) ).LT.SMIN ) THEN
+ INFO = 1
+ T16( I, I ) = SMIN
+ END IF
+ DO 90 J = I + 1, 4
+ T16( J, I ) = T16( J, I ) / T16( I, I )
+ BTMP( J ) = BTMP( J ) - T16( J, I )*BTMP( I )
+ DO 80 K = I + 1, 4
+ T16( J, K ) = T16( J, K ) - T16( J, I )*T16( I, K )
+ 80 CONTINUE
+ 90 CONTINUE
+ 100 CONTINUE
+ IF( ABS( T16( 4, 4 ) ).LT.SMIN )
+ $ T16( 4, 4 ) = SMIN
+ SCALE = ONE
+ IF( ( EIGHT*SMLNUM )*ABS( BTMP( 1 ) ).GT.ABS( T16( 1, 1 ) ) .OR.
+ $ ( EIGHT*SMLNUM )*ABS( BTMP( 2 ) ).GT.ABS( T16( 2, 2 ) ) .OR.
+ $ ( EIGHT*SMLNUM )*ABS( BTMP( 3 ) ).GT.ABS( T16( 3, 3 ) ) .OR.
+ $ ( EIGHT*SMLNUM )*ABS( BTMP( 4 ) ).GT.ABS( T16( 4, 4 ) ) ) THEN
+ SCALE = ( ONE / EIGHT ) / MAX( ABS( BTMP( 1 ) ),
+ $ ABS( BTMP( 2 ) ), ABS( BTMP( 3 ) ), ABS( BTMP( 4 ) ) )
+ BTMP( 1 ) = BTMP( 1 )*SCALE
+ BTMP( 2 ) = BTMP( 2 )*SCALE
+ BTMP( 3 ) = BTMP( 3 )*SCALE
+ BTMP( 4 ) = BTMP( 4 )*SCALE
+ END IF
+ DO 120 I = 1, 4
+ K = 5 - I
+ TEMP = ONE / T16( K, K )
+ TMP( K ) = BTMP( K )*TEMP
+ DO 110 J = K + 1, 4
+ TMP( K ) = TMP( K ) - ( TEMP*T16( K, J ) )*TMP( J )
+ 110 CONTINUE
+ 120 CONTINUE
+ DO 130 I = 1, 3
+ IF( JPIV( 4-I ).NE.4-I ) THEN
+ TEMP = TMP( 4-I )
+ TMP( 4-I ) = TMP( JPIV( 4-I ) )
+ TMP( JPIV( 4-I ) ) = TEMP
+ END IF
+ 130 CONTINUE
+ X( 1, 1 ) = TMP( 1 )
+ X( 2, 1 ) = TMP( 2 )
+ X( 1, 2 ) = TMP( 3 )
+ X( 2, 2 ) = TMP( 4 )
+ XNORM = MAX( ABS( TMP( 1 ) )+ABS( TMP( 3 ) ),
+ $ ABS( TMP( 2 ) )+ABS( TMP( 4 ) ) )
+ RETURN
+*
+* End of DLASY2
+*
+ END