diff options
Diffstat (limited to '2.3-1/src/fortran/lapack/dlasv2.f')
-rw-r--r-- | 2.3-1/src/fortran/lapack/dlasv2.f | 249 |
1 files changed, 249 insertions, 0 deletions
diff --git a/2.3-1/src/fortran/lapack/dlasv2.f b/2.3-1/src/fortran/lapack/dlasv2.f new file mode 100644 index 00000000..4a00b25d --- /dev/null +++ b/2.3-1/src/fortran/lapack/dlasv2.f @@ -0,0 +1,249 @@ + SUBROUTINE DLASV2( F, G, H, SSMIN, SSMAX, SNR, CSR, SNL, CSL ) +* +* -- LAPACK auxiliary routine (version 3.1) -- +* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. +* November 2006 +* +* .. Scalar Arguments .. + DOUBLE PRECISION CSL, CSR, F, G, H, SNL, SNR, SSMAX, SSMIN +* .. +* +* Purpose +* ======= +* +* DLASV2 computes the singular value decomposition of a 2-by-2 +* triangular matrix +* [ F G ] +* [ 0 H ]. +* On return, abs(SSMAX) is the larger singular value, abs(SSMIN) is the +* smaller singular value, and (CSL,SNL) and (CSR,SNR) are the left and +* right singular vectors for abs(SSMAX), giving the decomposition +* +* [ CSL SNL ] [ F G ] [ CSR -SNR ] = [ SSMAX 0 ] +* [-SNL CSL ] [ 0 H ] [ SNR CSR ] [ 0 SSMIN ]. +* +* Arguments +* ========= +* +* F (input) DOUBLE PRECISION +* The (1,1) element of the 2-by-2 matrix. +* +* G (input) DOUBLE PRECISION +* The (1,2) element of the 2-by-2 matrix. +* +* H (input) DOUBLE PRECISION +* The (2,2) element of the 2-by-2 matrix. +* +* SSMIN (output) DOUBLE PRECISION +* abs(SSMIN) is the smaller singular value. +* +* SSMAX (output) DOUBLE PRECISION +* abs(SSMAX) is the larger singular value. +* +* SNL (output) DOUBLE PRECISION +* CSL (output) DOUBLE PRECISION +* The vector (CSL, SNL) is a unit left singular vector for the +* singular value abs(SSMAX). +* +* SNR (output) DOUBLE PRECISION +* CSR (output) DOUBLE PRECISION +* The vector (CSR, SNR) is a unit right singular vector for the +* singular value abs(SSMAX). +* +* Further Details +* =============== +* +* Any input parameter may be aliased with any output parameter. +* +* Barring over/underflow and assuming a guard digit in subtraction, all +* output quantities are correct to within a few units in the last +* place (ulps). +* +* In IEEE arithmetic, the code works correctly if one matrix element is +* infinite. +* +* Overflow will not occur unless the largest singular value itself +* overflows or is within a few ulps of overflow. (On machines with +* partial overflow, like the Cray, overflow may occur if the largest +* singular value is within a factor of 2 of overflow.) +* +* Underflow is harmless if underflow is gradual. Otherwise, results +* may correspond to a matrix modified by perturbations of size near +* the underflow threshold. +* +* ===================================================================== +* +* .. Parameters .. + DOUBLE PRECISION ZERO + PARAMETER ( ZERO = 0.0D0 ) + DOUBLE PRECISION HALF + PARAMETER ( HALF = 0.5D0 ) + DOUBLE PRECISION ONE + PARAMETER ( ONE = 1.0D0 ) + DOUBLE PRECISION TWO + PARAMETER ( TWO = 2.0D0 ) + DOUBLE PRECISION FOUR + PARAMETER ( FOUR = 4.0D0 ) +* .. +* .. Local Scalars .. + LOGICAL GASMAL, SWAP + INTEGER PMAX + DOUBLE PRECISION A, CLT, CRT, D, FA, FT, GA, GT, HA, HT, L, M, + $ MM, R, S, SLT, SRT, T, TEMP, TSIGN, TT +* .. +* .. Intrinsic Functions .. + INTRINSIC ABS, SIGN, SQRT +* .. +* .. External Functions .. + DOUBLE PRECISION DLAMCH + EXTERNAL DLAMCH +* .. +* .. Executable Statements .. +* + FT = F + FA = ABS( FT ) + HT = H + HA = ABS( H ) +* +* PMAX points to the maximum absolute element of matrix +* PMAX = 1 if F largest in absolute values +* PMAX = 2 if G largest in absolute values +* PMAX = 3 if H largest in absolute values +* + PMAX = 1 + SWAP = ( HA.GT.FA ) + IF( SWAP ) THEN + PMAX = 3 + TEMP = FT + FT = HT + HT = TEMP + TEMP = FA + FA = HA + HA = TEMP +* +* Now FA .ge. HA +* + END IF + GT = G + GA = ABS( GT ) + IF( GA.EQ.ZERO ) THEN +* +* Diagonal matrix +* + SSMIN = HA + SSMAX = FA + CLT = ONE + CRT = ONE + SLT = ZERO + SRT = ZERO + ELSE + GASMAL = .TRUE. + IF( GA.GT.FA ) THEN + PMAX = 2 + IF( ( FA / GA ).LT.DLAMCH( 'EPS' ) ) THEN +* +* Case of very large GA +* + GASMAL = .FALSE. + SSMAX = GA + IF( HA.GT.ONE ) THEN + SSMIN = FA / ( GA / HA ) + ELSE + SSMIN = ( FA / GA )*HA + END IF + CLT = ONE + SLT = HT / GT + SRT = ONE + CRT = FT / GT + END IF + END IF + IF( GASMAL ) THEN +* +* Normal case +* + D = FA - HA + IF( D.EQ.FA ) THEN +* +* Copes with infinite F or H +* + L = ONE + ELSE + L = D / FA + END IF +* +* Note that 0 .le. L .le. 1 +* + M = GT / FT +* +* Note that abs(M) .le. 1/macheps +* + T = TWO - L +* +* Note that T .ge. 1 +* + MM = M*M + TT = T*T + S = SQRT( TT+MM ) +* +* Note that 1 .le. S .le. 1 + 1/macheps +* + IF( L.EQ.ZERO ) THEN + R = ABS( M ) + ELSE + R = SQRT( L*L+MM ) + END IF +* +* Note that 0 .le. R .le. 1 + 1/macheps +* + A = HALF*( S+R ) +* +* Note that 1 .le. A .le. 1 + abs(M) +* + SSMIN = HA / A + SSMAX = FA*A + IF( MM.EQ.ZERO ) THEN +* +* Note that M is very tiny +* + IF( L.EQ.ZERO ) THEN + T = SIGN( TWO, FT )*SIGN( ONE, GT ) + ELSE + T = GT / SIGN( D, FT ) + M / T + END IF + ELSE + T = ( M / ( S+T )+M / ( R+L ) )*( ONE+A ) + END IF + L = SQRT( T*T+FOUR ) + CRT = TWO / L + SRT = T / L + CLT = ( CRT+SRT*M ) / A + SLT = ( HT / FT )*SRT / A + END IF + END IF + IF( SWAP ) THEN + CSL = SRT + SNL = CRT + CSR = SLT + SNR = CLT + ELSE + CSL = CLT + SNL = SLT + CSR = CRT + SNR = SRT + END IF +* +* Correct signs of SSMAX and SSMIN +* + IF( PMAX.EQ.1 ) + $ TSIGN = SIGN( ONE, CSR )*SIGN( ONE, CSL )*SIGN( ONE, F ) + IF( PMAX.EQ.2 ) + $ TSIGN = SIGN( ONE, SNR )*SIGN( ONE, CSL )*SIGN( ONE, G ) + IF( PMAX.EQ.3 ) + $ TSIGN = SIGN( ONE, SNR )*SIGN( ONE, SNL )*SIGN( ONE, H ) + SSMAX = SIGN( SSMAX, TSIGN ) + SSMIN = SIGN( SSMIN, TSIGN*SIGN( ONE, F )*SIGN( ONE, H ) ) + RETURN +* +* End of DLASV2 +* + END |