summaryrefslogtreecommitdiff
path: root/2.3-1/src/fortran/lapack/dlasq3.f
diff options
context:
space:
mode:
Diffstat (limited to '2.3-1/src/fortran/lapack/dlasq3.f')
-rw-r--r--2.3-1/src/fortran/lapack/dlasq3.f295
1 files changed, 295 insertions, 0 deletions
diff --git a/2.3-1/src/fortran/lapack/dlasq3.f b/2.3-1/src/fortran/lapack/dlasq3.f
new file mode 100644
index 00000000..ce4055d8
--- /dev/null
+++ b/2.3-1/src/fortran/lapack/dlasq3.f
@@ -0,0 +1,295 @@
+ SUBROUTINE DLASQ3( I0, N0, Z, PP, DMIN, SIGMA, DESIG, QMAX, NFAIL,
+ $ ITER, NDIV, IEEE )
+*
+* -- LAPACK auxiliary routine (version 3.1) --
+* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd..
+* November 2006
+*
+* .. Scalar Arguments ..
+ LOGICAL IEEE
+ INTEGER I0, ITER, N0, NDIV, NFAIL, PP
+ DOUBLE PRECISION DESIG, DMIN, QMAX, SIGMA
+* ..
+* .. Array Arguments ..
+ DOUBLE PRECISION Z( * )
+* ..
+*
+* Purpose
+* =======
+*
+* DLASQ3 checks for deflation, computes a shift (TAU) and calls dqds.
+* In case of failure it changes shifts, and tries again until output
+* is positive.
+*
+* Arguments
+* =========
+*
+* I0 (input) INTEGER
+* First index.
+*
+* N0 (input) INTEGER
+* Last index.
+*
+* Z (input) DOUBLE PRECISION array, dimension ( 4*N )
+* Z holds the qd array.
+*
+* PP (input) INTEGER
+* PP=0 for ping, PP=1 for pong.
+*
+* DMIN (output) DOUBLE PRECISION
+* Minimum value of d.
+*
+* SIGMA (output) DOUBLE PRECISION
+* Sum of shifts used in current segment.
+*
+* DESIG (input/output) DOUBLE PRECISION
+* Lower order part of SIGMA
+*
+* QMAX (input) DOUBLE PRECISION
+* Maximum value of q.
+*
+* NFAIL (output) INTEGER
+* Number of times shift was too big.
+*
+* ITER (output) INTEGER
+* Number of iterations.
+*
+* NDIV (output) INTEGER
+* Number of divisions.
+*
+* TTYPE (output) INTEGER
+* Shift type.
+*
+* IEEE (input) LOGICAL
+* Flag for IEEE or non IEEE arithmetic (passed to DLASQ5).
+*
+* =====================================================================
+*
+* .. Parameters ..
+ DOUBLE PRECISION CBIAS
+ PARAMETER ( CBIAS = 1.50D0 )
+ DOUBLE PRECISION ZERO, QURTR, HALF, ONE, TWO, HUNDRD
+ PARAMETER ( ZERO = 0.0D0, QURTR = 0.250D0, HALF = 0.5D0,
+ $ ONE = 1.0D0, TWO = 2.0D0, HUNDRD = 100.0D0 )
+* ..
+* .. Local Scalars ..
+ INTEGER IPN4, J4, N0IN, NN, TTYPE
+ DOUBLE PRECISION DMIN1, DMIN2, DN, DN1, DN2, EPS, S, SAFMIN, T,
+ $ TAU, TEMP, TOL, TOL2
+* ..
+* .. External Subroutines ..
+ EXTERNAL DLASQ4, DLASQ5, DLASQ6
+* ..
+* .. External Function ..
+ DOUBLE PRECISION DLAMCH
+ EXTERNAL DLAMCH
+* ..
+* .. Intrinsic Functions ..
+ INTRINSIC ABS, MAX, MIN, SQRT
+* ..
+* .. Save statement ..
+ SAVE TTYPE
+ SAVE DMIN1, DMIN2, DN, DN1, DN2, TAU
+* ..
+* .. Data statement ..
+ DATA TTYPE / 0 /
+ DATA DMIN1 / ZERO /, DMIN2 / ZERO /, DN / ZERO /,
+ $ DN1 / ZERO /, DN2 / ZERO /, TAU / ZERO /
+* ..
+* .. Executable Statements ..
+*
+ N0IN = N0
+ EPS = DLAMCH( 'Precision' )
+ SAFMIN = DLAMCH( 'Safe minimum' )
+ TOL = EPS*HUNDRD
+ TOL2 = TOL**2
+*
+* Check for deflation.
+*
+ 10 CONTINUE
+*
+ IF( N0.LT.I0 )
+ $ RETURN
+ IF( N0.EQ.I0 )
+ $ GO TO 20
+ NN = 4*N0 + PP
+ IF( N0.EQ.( I0+1 ) )
+ $ GO TO 40
+*
+* Check whether E(N0-1) is negligible, 1 eigenvalue.
+*
+ IF( Z( NN-5 ).GT.TOL2*( SIGMA+Z( NN-3 ) ) .AND.
+ $ Z( NN-2*PP-4 ).GT.TOL2*Z( NN-7 ) )
+ $ GO TO 30
+*
+ 20 CONTINUE
+*
+ Z( 4*N0-3 ) = Z( 4*N0+PP-3 ) + SIGMA
+ N0 = N0 - 1
+ GO TO 10
+*
+* Check whether E(N0-2) is negligible, 2 eigenvalues.
+*
+ 30 CONTINUE
+*
+ IF( Z( NN-9 ).GT.TOL2*SIGMA .AND.
+ $ Z( NN-2*PP-8 ).GT.TOL2*Z( NN-11 ) )
+ $ GO TO 50
+*
+ 40 CONTINUE
+*
+ IF( Z( NN-3 ).GT.Z( NN-7 ) ) THEN
+ S = Z( NN-3 )
+ Z( NN-3 ) = Z( NN-7 )
+ Z( NN-7 ) = S
+ END IF
+ IF( Z( NN-5 ).GT.Z( NN-3 )*TOL2 ) THEN
+ T = HALF*( ( Z( NN-7 )-Z( NN-3 ) )+Z( NN-5 ) )
+ S = Z( NN-3 )*( Z( NN-5 ) / T )
+ IF( S.LE.T ) THEN
+ S = Z( NN-3 )*( Z( NN-5 ) /
+ $ ( T*( ONE+SQRT( ONE+S / T ) ) ) )
+ ELSE
+ S = Z( NN-3 )*( Z( NN-5 ) / ( T+SQRT( T )*SQRT( T+S ) ) )
+ END IF
+ T = Z( NN-7 ) + ( S+Z( NN-5 ) )
+ Z( NN-3 ) = Z( NN-3 )*( Z( NN-7 ) / T )
+ Z( NN-7 ) = T
+ END IF
+ Z( 4*N0-7 ) = Z( NN-7 ) + SIGMA
+ Z( 4*N0-3 ) = Z( NN-3 ) + SIGMA
+ N0 = N0 - 2
+ GO TO 10
+*
+ 50 CONTINUE
+*
+* Reverse the qd-array, if warranted.
+*
+ IF( DMIN.LE.ZERO .OR. N0.LT.N0IN ) THEN
+ IF( CBIAS*Z( 4*I0+PP-3 ).LT.Z( 4*N0+PP-3 ) ) THEN
+ IPN4 = 4*( I0+N0 )
+ DO 60 J4 = 4*I0, 2*( I0+N0-1 ), 4
+ TEMP = Z( J4-3 )
+ Z( J4-3 ) = Z( IPN4-J4-3 )
+ Z( IPN4-J4-3 ) = TEMP
+ TEMP = Z( J4-2 )
+ Z( J4-2 ) = Z( IPN4-J4-2 )
+ Z( IPN4-J4-2 ) = TEMP
+ TEMP = Z( J4-1 )
+ Z( J4-1 ) = Z( IPN4-J4-5 )
+ Z( IPN4-J4-5 ) = TEMP
+ TEMP = Z( J4 )
+ Z( J4 ) = Z( IPN4-J4-4 )
+ Z( IPN4-J4-4 ) = TEMP
+ 60 CONTINUE
+ IF( N0-I0.LE.4 ) THEN
+ Z( 4*N0+PP-1 ) = Z( 4*I0+PP-1 )
+ Z( 4*N0-PP ) = Z( 4*I0-PP )
+ END IF
+ DMIN2 = MIN( DMIN2, Z( 4*N0+PP-1 ) )
+ Z( 4*N0+PP-1 ) = MIN( Z( 4*N0+PP-1 ), Z( 4*I0+PP-1 ),
+ $ Z( 4*I0+PP+3 ) )
+ Z( 4*N0-PP ) = MIN( Z( 4*N0-PP ), Z( 4*I0-PP ),
+ $ Z( 4*I0-PP+4 ) )
+ QMAX = MAX( QMAX, Z( 4*I0+PP-3 ), Z( 4*I0+PP+1 ) )
+ DMIN = -ZERO
+ END IF
+ END IF
+*
+ IF( DMIN.LT.ZERO .OR. SAFMIN*QMAX.LT.MIN( Z( 4*N0+PP-1 ),
+ $ Z( 4*N0+PP-9 ), DMIN2+Z( 4*N0-PP ) ) ) THEN
+*
+* Choose a shift.
+*
+ CALL DLASQ4( I0, N0, Z, PP, N0IN, DMIN, DMIN1, DMIN2, DN, DN1,
+ $ DN2, TAU, TTYPE )
+*
+* Call dqds until DMIN > 0.
+*
+ 80 CONTINUE
+*
+ CALL DLASQ5( I0, N0, Z, PP, TAU, DMIN, DMIN1, DMIN2, DN,
+ $ DN1, DN2, IEEE )
+*
+ NDIV = NDIV + ( N0-I0+2 )
+ ITER = ITER + 1
+*
+* Check status.
+*
+ IF( DMIN.GE.ZERO .AND. DMIN1.GT.ZERO ) THEN
+*
+* Success.
+*
+ GO TO 100
+*
+ ELSE IF( DMIN.LT.ZERO .AND. DMIN1.GT.ZERO .AND.
+ $ Z( 4*( N0-1 )-PP ).LT.TOL*( SIGMA+DN1 ) .AND.
+ $ ABS( DN ).LT.TOL*SIGMA ) THEN
+*
+* Convergence hidden by negative DN.
+*
+ Z( 4*( N0-1 )-PP+2 ) = ZERO
+ DMIN = ZERO
+ GO TO 100
+ ELSE IF( DMIN.LT.ZERO ) THEN
+*
+* TAU too big. Select new TAU and try again.
+*
+ NFAIL = NFAIL + 1
+ IF( TTYPE.LT.-22 ) THEN
+*
+* Failed twice. Play it safe.
+*
+ TAU = ZERO
+ ELSE IF( DMIN1.GT.ZERO ) THEN
+*
+* Late failure. Gives excellent shift.
+*
+ TAU = ( TAU+DMIN )*( ONE-TWO*EPS )
+ TTYPE = TTYPE - 11
+ ELSE
+*
+* Early failure. Divide by 4.
+*
+ TAU = QURTR*TAU
+ TTYPE = TTYPE - 12
+ END IF
+ GO TO 80
+ ELSE IF( DMIN.NE.DMIN ) THEN
+*
+* NaN.
+*
+ TAU = ZERO
+ GO TO 80
+ ELSE
+*
+* Possible underflow. Play it safe.
+*
+ GO TO 90
+ END IF
+ END IF
+*
+* Risk of underflow.
+*
+ 90 CONTINUE
+ CALL DLASQ6( I0, N0, Z, PP, DMIN, DMIN1, DMIN2, DN, DN1, DN2 )
+ NDIV = NDIV + ( N0-I0+2 )
+ ITER = ITER + 1
+ TAU = ZERO
+*
+ 100 CONTINUE
+ IF( TAU.LT.SIGMA ) THEN
+ DESIG = DESIG + TAU
+ T = SIGMA + DESIG
+ DESIG = DESIG - ( T-SIGMA )
+ ELSE
+ T = SIGMA + TAU
+ DESIG = SIGMA - ( T-TAU ) + DESIG
+ END IF
+ SIGMA = T
+*
+ RETURN
+*
+* End of DLASQ3
+*
+ END