summaryrefslogtreecommitdiff
path: root/2.3-1/src/fortran/lapack/dlasq2.f
diff options
context:
space:
mode:
Diffstat (limited to '2.3-1/src/fortran/lapack/dlasq2.f')
-rw-r--r--2.3-1/src/fortran/lapack/dlasq2.f448
1 files changed, 448 insertions, 0 deletions
diff --git a/2.3-1/src/fortran/lapack/dlasq2.f b/2.3-1/src/fortran/lapack/dlasq2.f
new file mode 100644
index 00000000..b6b79aeb
--- /dev/null
+++ b/2.3-1/src/fortran/lapack/dlasq2.f
@@ -0,0 +1,448 @@
+ SUBROUTINE DLASQ2( N, Z, INFO )
+*
+* -- LAPACK routine (version 3.1) --
+* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd..
+* November 2006
+*
+* Modified to call DLAZQ3 in place of DLASQ3, 13 Feb 03, SJH.
+*
+* .. Scalar Arguments ..
+ INTEGER INFO, N
+* ..
+* .. Array Arguments ..
+ DOUBLE PRECISION Z( * )
+* ..
+*
+* Purpose
+* =======
+*
+* DLASQ2 computes all the eigenvalues of the symmetric positive
+* definite tridiagonal matrix associated with the qd array Z to high
+* relative accuracy are computed to high relative accuracy, in the
+* absence of denormalization, underflow and overflow.
+*
+* To see the relation of Z to the tridiagonal matrix, let L be a
+* unit lower bidiagonal matrix with subdiagonals Z(2,4,6,,..) and
+* let U be an upper bidiagonal matrix with 1's above and diagonal
+* Z(1,3,5,,..). The tridiagonal is L*U or, if you prefer, the
+* symmetric tridiagonal to which it is similar.
+*
+* Note : DLASQ2 defines a logical variable, IEEE, which is true
+* on machines which follow ieee-754 floating-point standard in their
+* handling of infinities and NaNs, and false otherwise. This variable
+* is passed to DLAZQ3.
+*
+* Arguments
+* =========
+*
+* N (input) INTEGER
+* The number of rows and columns in the matrix. N >= 0.
+*
+* Z (workspace) DOUBLE PRECISION array, dimension ( 4*N )
+* On entry Z holds the qd array. On exit, entries 1 to N hold
+* the eigenvalues in decreasing order, Z( 2*N+1 ) holds the
+* trace, and Z( 2*N+2 ) holds the sum of the eigenvalues. If
+* N > 2, then Z( 2*N+3 ) holds the iteration count, Z( 2*N+4 )
+* holds NDIVS/NIN^2, and Z( 2*N+5 ) holds the percentage of
+* shifts that failed.
+*
+* INFO (output) INTEGER
+* = 0: successful exit
+* < 0: if the i-th argument is a scalar and had an illegal
+* value, then INFO = -i, if the i-th argument is an
+* array and the j-entry had an illegal value, then
+* INFO = -(i*100+j)
+* > 0: the algorithm failed
+* = 1, a split was marked by a positive value in E
+* = 2, current block of Z not diagonalized after 30*N
+* iterations (in inner while loop)
+* = 3, termination criterion of outer while loop not met
+* (program created more than N unreduced blocks)
+*
+* Further Details
+* ===============
+* Local Variables: I0:N0 defines a current unreduced segment of Z.
+* The shifts are accumulated in SIGMA. Iteration count is in ITER.
+* Ping-pong is controlled by PP (alternates between 0 and 1).
+*
+* =====================================================================
+*
+* .. Parameters ..
+ DOUBLE PRECISION CBIAS
+ PARAMETER ( CBIAS = 1.50D0 )
+ DOUBLE PRECISION ZERO, HALF, ONE, TWO, FOUR, HUNDRD
+ PARAMETER ( ZERO = 0.0D0, HALF = 0.5D0, ONE = 1.0D0,
+ $ TWO = 2.0D0, FOUR = 4.0D0, HUNDRD = 100.0D0 )
+* ..
+* .. Local Scalars ..
+ LOGICAL IEEE
+ INTEGER I0, I4, IINFO, IPN4, ITER, IWHILA, IWHILB, K,
+ $ N0, NBIG, NDIV, NFAIL, PP, SPLT, TTYPE
+ DOUBLE PRECISION D, DESIG, DMIN, DMIN1, DMIN2, DN, DN1, DN2, E,
+ $ EMAX, EMIN, EPS, OLDEMN, QMAX, QMIN, S, SAFMIN,
+ $ SIGMA, T, TAU, TEMP, TOL, TOL2, TRACE, ZMAX
+* ..
+* .. External Subroutines ..
+ EXTERNAL DLAZQ3, DLASRT, XERBLA
+* ..
+* .. External Functions ..
+ INTEGER ILAENV
+ DOUBLE PRECISION DLAMCH
+ EXTERNAL DLAMCH, ILAENV
+* ..
+* .. Intrinsic Functions ..
+ INTRINSIC ABS, DBLE, MAX, MIN, SQRT
+* ..
+* .. Executable Statements ..
+*
+* Test the input arguments.
+* (in case DLASQ2 is not called by DLASQ1)
+*
+ INFO = 0
+ EPS = DLAMCH( 'Precision' )
+ SAFMIN = DLAMCH( 'Safe minimum' )
+ TOL = EPS*HUNDRD
+ TOL2 = TOL**2
+*
+ IF( N.LT.0 ) THEN
+ INFO = -1
+ CALL XERBLA( 'DLASQ2', 1 )
+ RETURN
+ ELSE IF( N.EQ.0 ) THEN
+ RETURN
+ ELSE IF( N.EQ.1 ) THEN
+*
+* 1-by-1 case.
+*
+ IF( Z( 1 ).LT.ZERO ) THEN
+ INFO = -201
+ CALL XERBLA( 'DLASQ2', 2 )
+ END IF
+ RETURN
+ ELSE IF( N.EQ.2 ) THEN
+*
+* 2-by-2 case.
+*
+ IF( Z( 2 ).LT.ZERO .OR. Z( 3 ).LT.ZERO ) THEN
+ INFO = -2
+ CALL XERBLA( 'DLASQ2', 2 )
+ RETURN
+ ELSE IF( Z( 3 ).GT.Z( 1 ) ) THEN
+ D = Z( 3 )
+ Z( 3 ) = Z( 1 )
+ Z( 1 ) = D
+ END IF
+ Z( 5 ) = Z( 1 ) + Z( 2 ) + Z( 3 )
+ IF( Z( 2 ).GT.Z( 3 )*TOL2 ) THEN
+ T = HALF*( ( Z( 1 )-Z( 3 ) )+Z( 2 ) )
+ S = Z( 3 )*( Z( 2 ) / T )
+ IF( S.LE.T ) THEN
+ S = Z( 3 )*( Z( 2 ) / ( T*( ONE+SQRT( ONE+S / T ) ) ) )
+ ELSE
+ S = Z( 3 )*( Z( 2 ) / ( T+SQRT( T )*SQRT( T+S ) ) )
+ END IF
+ T = Z( 1 ) + ( S+Z( 2 ) )
+ Z( 3 ) = Z( 3 )*( Z( 1 ) / T )
+ Z( 1 ) = T
+ END IF
+ Z( 2 ) = Z( 3 )
+ Z( 6 ) = Z( 2 ) + Z( 1 )
+ RETURN
+ END IF
+*
+* Check for negative data and compute sums of q's and e's.
+*
+ Z( 2*N ) = ZERO
+ EMIN = Z( 2 )
+ QMAX = ZERO
+ ZMAX = ZERO
+ D = ZERO
+ E = ZERO
+*
+ DO 10 K = 1, 2*( N-1 ), 2
+ IF( Z( K ).LT.ZERO ) THEN
+ INFO = -( 200+K )
+ CALL XERBLA( 'DLASQ2', 2 )
+ RETURN
+ ELSE IF( Z( K+1 ).LT.ZERO ) THEN
+ INFO = -( 200+K+1 )
+ CALL XERBLA( 'DLASQ2', 2 )
+ RETURN
+ END IF
+ D = D + Z( K )
+ E = E + Z( K+1 )
+ QMAX = MAX( QMAX, Z( K ) )
+ EMIN = MIN( EMIN, Z( K+1 ) )
+ ZMAX = MAX( QMAX, ZMAX, Z( K+1 ) )
+ 10 CONTINUE
+ IF( Z( 2*N-1 ).LT.ZERO ) THEN
+ INFO = -( 200+2*N-1 )
+ CALL XERBLA( 'DLASQ2', 2 )
+ RETURN
+ END IF
+ D = D + Z( 2*N-1 )
+ QMAX = MAX( QMAX, Z( 2*N-1 ) )
+ ZMAX = MAX( QMAX, ZMAX )
+*
+* Check for diagonality.
+*
+ IF( E.EQ.ZERO ) THEN
+ DO 20 K = 2, N
+ Z( K ) = Z( 2*K-1 )
+ 20 CONTINUE
+ CALL DLASRT( 'D', N, Z, IINFO )
+ Z( 2*N-1 ) = D
+ RETURN
+ END IF
+*
+ TRACE = D + E
+*
+* Check for zero data.
+*
+ IF( TRACE.EQ.ZERO ) THEN
+ Z( 2*N-1 ) = ZERO
+ RETURN
+ END IF
+*
+* Check whether the machine is IEEE conformable.
+*
+ IEEE = ILAENV( 10, 'DLASQ2', 'N', 1, 2, 3, 4 ).EQ.1 .AND.
+ $ ILAENV( 11, 'DLASQ2', 'N', 1, 2, 3, 4 ).EQ.1
+*
+* Rearrange data for locality: Z=(q1,qq1,e1,ee1,q2,qq2,e2,ee2,...).
+*
+ DO 30 K = 2*N, 2, -2
+ Z( 2*K ) = ZERO
+ Z( 2*K-1 ) = Z( K )
+ Z( 2*K-2 ) = ZERO
+ Z( 2*K-3 ) = Z( K-1 )
+ 30 CONTINUE
+*
+ I0 = 1
+ N0 = N
+*
+* Reverse the qd-array, if warranted.
+*
+ IF( CBIAS*Z( 4*I0-3 ).LT.Z( 4*N0-3 ) ) THEN
+ IPN4 = 4*( I0+N0 )
+ DO 40 I4 = 4*I0, 2*( I0+N0-1 ), 4
+ TEMP = Z( I4-3 )
+ Z( I4-3 ) = Z( IPN4-I4-3 )
+ Z( IPN4-I4-3 ) = TEMP
+ TEMP = Z( I4-1 )
+ Z( I4-1 ) = Z( IPN4-I4-5 )
+ Z( IPN4-I4-5 ) = TEMP
+ 40 CONTINUE
+ END IF
+*
+* Initial split checking via dqd and Li's test.
+*
+ PP = 0
+*
+ DO 80 K = 1, 2
+*
+ D = Z( 4*N0+PP-3 )
+ DO 50 I4 = 4*( N0-1 ) + PP, 4*I0 + PP, -4
+ IF( Z( I4-1 ).LE.TOL2*D ) THEN
+ Z( I4-1 ) = -ZERO
+ D = Z( I4-3 )
+ ELSE
+ D = Z( I4-3 )*( D / ( D+Z( I4-1 ) ) )
+ END IF
+ 50 CONTINUE
+*
+* dqd maps Z to ZZ plus Li's test.
+*
+ EMIN = Z( 4*I0+PP+1 )
+ D = Z( 4*I0+PP-3 )
+ DO 60 I4 = 4*I0 + PP, 4*( N0-1 ) + PP, 4
+ Z( I4-2*PP-2 ) = D + Z( I4-1 )
+ IF( Z( I4-1 ).LE.TOL2*D ) THEN
+ Z( I4-1 ) = -ZERO
+ Z( I4-2*PP-2 ) = D
+ Z( I4-2*PP ) = ZERO
+ D = Z( I4+1 )
+ ELSE IF( SAFMIN*Z( I4+1 ).LT.Z( I4-2*PP-2 ) .AND.
+ $ SAFMIN*Z( I4-2*PP-2 ).LT.Z( I4+1 ) ) THEN
+ TEMP = Z( I4+1 ) / Z( I4-2*PP-2 )
+ Z( I4-2*PP ) = Z( I4-1 )*TEMP
+ D = D*TEMP
+ ELSE
+ Z( I4-2*PP ) = Z( I4+1 )*( Z( I4-1 ) / Z( I4-2*PP-2 ) )
+ D = Z( I4+1 )*( D / Z( I4-2*PP-2 ) )
+ END IF
+ EMIN = MIN( EMIN, Z( I4-2*PP ) )
+ 60 CONTINUE
+ Z( 4*N0-PP-2 ) = D
+*
+* Now find qmax.
+*
+ QMAX = Z( 4*I0-PP-2 )
+ DO 70 I4 = 4*I0 - PP + 2, 4*N0 - PP - 2, 4
+ QMAX = MAX( QMAX, Z( I4 ) )
+ 70 CONTINUE
+*
+* Prepare for the next iteration on K.
+*
+ PP = 1 - PP
+ 80 CONTINUE
+*
+* Initialise variables to pass to DLAZQ3
+*
+ TTYPE = 0
+ DMIN1 = ZERO
+ DMIN2 = ZERO
+ DN = ZERO
+ DN1 = ZERO
+ DN2 = ZERO
+ TAU = ZERO
+*
+ ITER = 2
+ NFAIL = 0
+ NDIV = 2*( N0-I0 )
+*
+ DO 140 IWHILA = 1, N + 1
+ IF( N0.LT.1 )
+ $ GO TO 150
+*
+* While array unfinished do
+*
+* E(N0) holds the value of SIGMA when submatrix in I0:N0
+* splits from the rest of the array, but is negated.
+*
+ DESIG = ZERO
+ IF( N0.EQ.N ) THEN
+ SIGMA = ZERO
+ ELSE
+ SIGMA = -Z( 4*N0-1 )
+ END IF
+ IF( SIGMA.LT.ZERO ) THEN
+ INFO = 1
+ RETURN
+ END IF
+*
+* Find last unreduced submatrix's top index I0, find QMAX and
+* EMIN. Find Gershgorin-type bound if Q's much greater than E's.
+*
+ EMAX = ZERO
+ IF( N0.GT.I0 ) THEN
+ EMIN = ABS( Z( 4*N0-5 ) )
+ ELSE
+ EMIN = ZERO
+ END IF
+ QMIN = Z( 4*N0-3 )
+ QMAX = QMIN
+ DO 90 I4 = 4*N0, 8, -4
+ IF( Z( I4-5 ).LE.ZERO )
+ $ GO TO 100
+ IF( QMIN.GE.FOUR*EMAX ) THEN
+ QMIN = MIN( QMIN, Z( I4-3 ) )
+ EMAX = MAX( EMAX, Z( I4-5 ) )
+ END IF
+ QMAX = MAX( QMAX, Z( I4-7 )+Z( I4-5 ) )
+ EMIN = MIN( EMIN, Z( I4-5 ) )
+ 90 CONTINUE
+ I4 = 4
+*
+ 100 CONTINUE
+ I0 = I4 / 4
+*
+* Store EMIN for passing to DLAZQ3.
+*
+ Z( 4*N0-1 ) = EMIN
+*
+* Put -(initial shift) into DMIN.
+*
+ DMIN = -MAX( ZERO, QMIN-TWO*SQRT( QMIN )*SQRT( EMAX ) )
+*
+* Now I0:N0 is unreduced. PP = 0 for ping, PP = 1 for pong.
+*
+ PP = 0
+*
+ NBIG = 30*( N0-I0+1 )
+ DO 120 IWHILB = 1, NBIG
+ IF( I0.GT.N0 )
+ $ GO TO 130
+*
+* While submatrix unfinished take a good dqds step.
+*
+ CALL DLAZQ3( I0, N0, Z, PP, DMIN, SIGMA, DESIG, QMAX, NFAIL,
+ $ ITER, NDIV, IEEE, TTYPE, DMIN1, DMIN2, DN, DN1,
+ $ DN2, TAU )
+*
+ PP = 1 - PP
+*
+* When EMIN is very small check for splits.
+*
+ IF( PP.EQ.0 .AND. N0-I0.GE.3 ) THEN
+ IF( Z( 4*N0 ).LE.TOL2*QMAX .OR.
+ $ Z( 4*N0-1 ).LE.TOL2*SIGMA ) THEN
+ SPLT = I0 - 1
+ QMAX = Z( 4*I0-3 )
+ EMIN = Z( 4*I0-1 )
+ OLDEMN = Z( 4*I0 )
+ DO 110 I4 = 4*I0, 4*( N0-3 ), 4
+ IF( Z( I4 ).LE.TOL2*Z( I4-3 ) .OR.
+ $ Z( I4-1 ).LE.TOL2*SIGMA ) THEN
+ Z( I4-1 ) = -SIGMA
+ SPLT = I4 / 4
+ QMAX = ZERO
+ EMIN = Z( I4+3 )
+ OLDEMN = Z( I4+4 )
+ ELSE
+ QMAX = MAX( QMAX, Z( I4+1 ) )
+ EMIN = MIN( EMIN, Z( I4-1 ) )
+ OLDEMN = MIN( OLDEMN, Z( I4 ) )
+ END IF
+ 110 CONTINUE
+ Z( 4*N0-1 ) = EMIN
+ Z( 4*N0 ) = OLDEMN
+ I0 = SPLT + 1
+ END IF
+ END IF
+*
+ 120 CONTINUE
+*
+ INFO = 2
+ RETURN
+*
+* end IWHILB
+*
+ 130 CONTINUE
+*
+ 140 CONTINUE
+*
+ INFO = 3
+ RETURN
+*
+* end IWHILA
+*
+ 150 CONTINUE
+*
+* Move q's to the front.
+*
+ DO 160 K = 2, N
+ Z( K ) = Z( 4*K-3 )
+ 160 CONTINUE
+*
+* Sort and compute sum of eigenvalues.
+*
+ CALL DLASRT( 'D', N, Z, IINFO )
+*
+ E = ZERO
+ DO 170 K = N, 1, -1
+ E = E + Z( K )
+ 170 CONTINUE
+*
+* Store trace, sum(eigenvalues) and information on performance.
+*
+ Z( 2*N+1 ) = TRACE
+ Z( 2*N+2 ) = E
+ Z( 2*N+3 ) = DBLE( ITER )
+ Z( 2*N+4 ) = DBLE( NDIV ) / DBLE( N**2 )
+ Z( 2*N+5 ) = HUNDRD*NFAIL / DBLE( ITER )
+ RETURN
+*
+* End of DLASQ2
+*
+ END