summaryrefslogtreecommitdiff
path: root/2.3-1/src/fortran/lapack/dlamch.f
diff options
context:
space:
mode:
Diffstat (limited to '2.3-1/src/fortran/lapack/dlamch.f')
-rw-r--r--2.3-1/src/fortran/lapack/dlamch.f857
1 files changed, 857 insertions, 0 deletions
diff --git a/2.3-1/src/fortran/lapack/dlamch.f b/2.3-1/src/fortran/lapack/dlamch.f
new file mode 100644
index 00000000..64ac3bec
--- /dev/null
+++ b/2.3-1/src/fortran/lapack/dlamch.f
@@ -0,0 +1,857 @@
+ DOUBLE PRECISION FUNCTION DLAMCH( CMACH )
+*
+* -- LAPACK auxiliary routine (version 3.0) --
+* Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
+* Courant Institute, Argonne National Lab, and Rice University
+* October 31, 1992
+*
+* .. Scalar Arguments ..
+ CHARACTER CMACH
+* ..
+*
+* Purpose
+* =======
+*
+* DLAMCH determines double precision machine parameters.
+*
+* Arguments
+* =========
+*
+* CMACH (input) CHARACTER*1
+* Specifies the value to be returned by DLAMCH:
+* = 'E' or 'e', DLAMCH := eps
+* = 'S' or 's , DLAMCH := sfmin
+* = 'B' or 'b', DLAMCH := base
+* = 'P' or 'p', DLAMCH := eps*base
+* = 'N' or 'n', DLAMCH := t
+* = 'R' or 'r', DLAMCH := rnd
+* = 'M' or 'm', DLAMCH := emin
+* = 'U' or 'u', DLAMCH := rmin
+* = 'L' or 'l', DLAMCH := emax
+* = 'O' or 'o', DLAMCH := rmax
+*
+* where
+*
+* eps = relative machine precision
+* sfmin = safe minimum, such that 1/sfmin does not overflow
+* base = base of the machine
+* prec = eps*base
+* t = number of (base) digits in the mantissa
+* rnd = 1.0 when rounding occurs in addition, 0.0 otherwise
+* emin = minimum exponent before (gradual) underflow
+* rmin = underflow threshold - base**(emin-1)
+* emax = largest exponent before overflow
+* rmax = overflow threshold - (base**emax)*(1-eps)
+*
+* =====================================================================
+*
+* .. Parameters ..
+ DOUBLE PRECISION ONE, ZERO
+ PARAMETER ( ONE = 1.0D+0, ZERO = 0.0D+0 )
+* ..
+* .. Local Scalars ..
+ LOGICAL FIRST, LRND
+ INTEGER BETA, IMAX, IMIN, IT
+ DOUBLE PRECISION BASE, EMAX, EMIN, EPS, PREC, RMACH, RMAX, RMIN,
+ $ RND, SFMIN, SMALL, T
+* ..
+* .. External Functions ..
+ LOGICAL LSAME
+ EXTERNAL LSAME
+* ..
+* .. External Subroutines ..
+ EXTERNAL DLAMC2
+* ..
+* .. Save statement ..
+ SAVE FIRST, EPS, SFMIN, BASE, T, RND, EMIN, RMIN,
+ $ EMAX, RMAX, PREC
+* ..
+* .. Data statements ..
+ DATA FIRST / .TRUE. /
+* ..
+* .. Executable Statements ..
+*
+ IF( FIRST ) THEN
+ FIRST = .FALSE.
+ CALL DLAMC2( BETA, IT, LRND, EPS, IMIN, RMIN, IMAX, RMAX )
+ BASE = BETA
+ T = IT
+ IF( LRND ) THEN
+ RND = ONE
+ EPS = ( BASE**( 1-IT ) ) / 2
+ ELSE
+ RND = ZERO
+ EPS = BASE**( 1-IT )
+ END IF
+ PREC = EPS*BASE
+ EMIN = IMIN
+ EMAX = IMAX
+ SFMIN = RMIN
+ SMALL = ONE / RMAX
+ IF( SMALL.GE.SFMIN ) THEN
+*
+* Use SMALL plus a bit, to avoid the possibility of rounding
+* causing overflow when computing 1/sfmin.
+*
+ SFMIN = SMALL*( ONE+EPS )
+ END IF
+ END IF
+*
+ IF( LSAME( CMACH, 'E' ) ) THEN
+ RMACH = EPS
+ ELSE IF( LSAME( CMACH, 'S' ) ) THEN
+ RMACH = SFMIN
+ ELSE IF( LSAME( CMACH, 'B' ) ) THEN
+ RMACH = BASE
+ ELSE IF( LSAME( CMACH, 'P' ) ) THEN
+ RMACH = PREC
+ ELSE IF( LSAME( CMACH, 'N' ) ) THEN
+ RMACH = T
+ ELSE IF( LSAME( CMACH, 'R' ) ) THEN
+ RMACH = RND
+ ELSE IF( LSAME( CMACH, 'M' ) ) THEN
+ RMACH = EMIN
+ ELSE IF( LSAME( CMACH, 'U' ) ) THEN
+ RMACH = RMIN
+ ELSE IF( LSAME( CMACH, 'L' ) ) THEN
+ RMACH = EMAX
+ ELSE IF( LSAME( CMACH, 'O' ) ) THEN
+ RMACH = RMAX
+ END IF
+*
+ DLAMCH = RMACH
+ RETURN
+*
+* End of DLAMCH
+*
+ END
+*
+************************************************************************
+*
+ SUBROUTINE DLAMC1( BETA, T, RND, IEEE1 )
+*
+* -- LAPACK auxiliary routine (version 3.0) --
+* Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
+* Courant Institute, Argonne National Lab, and Rice University
+* October 31, 1992
+*
+* .. Scalar Arguments ..
+ LOGICAL IEEE1, RND
+ INTEGER BETA, T
+* ..
+*
+* Purpose
+* =======
+*
+* DLAMC1 determines the machine parameters given by BETA, T, RND, and
+* IEEE1.
+*
+* Arguments
+* =========
+*
+* BETA (output) INTEGER
+* The base of the machine.
+*
+* T (output) INTEGER
+* The number of ( BETA ) digits in the mantissa.
+*
+* RND (output) LOGICAL
+* Specifies whether proper rounding ( RND = .TRUE. ) or
+* chopping ( RND = .FALSE. ) occurs in addition. This may not
+* be a reliable guide to the way in which the machine performs
+* its arithmetic.
+*
+* IEEE1 (output) LOGICAL
+* Specifies whether rounding appears to be done in the IEEE
+* 'round to nearest' style.
+*
+* Further Details
+* ===============
+*
+* The routine is based on the routine ENVRON by Malcolm and
+* incorporates suggestions by Gentleman and Marovich. See
+*
+* Malcolm M. A. (1972) Algorithms to reveal properties of
+* floating-point arithmetic. Comms. of the ACM, 15, 949-951.
+*
+* Gentleman W. M. and Marovich S. B. (1974) More on algorithms
+* that reveal properties of floating point arithmetic units.
+* Comms. of the ACM, 17, 276-277.
+*
+* =====================================================================
+*
+* .. Local Scalars ..
+ LOGICAL FIRST, LIEEE1, LRND
+ INTEGER LBETA, LT
+ DOUBLE PRECISION A, B, C, F, ONE, QTR, SAVEC, T1, T2
+* ..
+* .. External Functions ..
+ DOUBLE PRECISION DLAMC3
+ EXTERNAL DLAMC3
+* ..
+* .. Save statement ..
+ SAVE FIRST, LIEEE1, LBETA, LRND, LT
+* ..
+* .. Data statements ..
+ DATA FIRST / .TRUE. /
+* ..
+* .. Executable Statements ..
+*
+ IF( FIRST ) THEN
+ FIRST = .FALSE.
+ ONE = 1
+*
+* LBETA, LIEEE1, LT and LRND are the local values of BETA,
+* IEEE1, T and RND.
+*
+* Throughout this routine we use the function DLAMC3 to ensure
+* that relevant values are stored and not held in registers, or
+* are not affected by optimizers.
+*
+* Compute a = 2.0**m with the smallest positive integer m such
+* that
+*
+* fl( a + 1.0 ) = a.
+*
+ A = 1
+ C = 1
+*
+*+ WHILE( C.EQ.ONE )LOOP
+ 10 CONTINUE
+ IF( C.EQ.ONE ) THEN
+ A = 2*A
+ C = DLAMC3( A, ONE )
+ C = DLAMC3( C, -A )
+ GO TO 10
+ END IF
+*+ END WHILE
+*
+* Now compute b = 2.0**m with the smallest positive integer m
+* such that
+*
+* fl( a + b ) .gt. a.
+*
+ B = 1
+ C = DLAMC3( A, B )
+*
+*+ WHILE( C.EQ.A )LOOP
+ 20 CONTINUE
+ IF( C.EQ.A ) THEN
+ B = 2*B
+ C = DLAMC3( A, B )
+ GO TO 20
+ END IF
+*+ END WHILE
+*
+* Now compute the base. a and c are neighbouring floating point
+* numbers in the interval ( beta**t, beta**( t + 1 ) ) and so
+* their difference is beta. Adding 0.25 to c is to ensure that it
+* is truncated to beta and not ( beta - 1 ).
+*
+ QTR = ONE / 4
+ SAVEC = C
+ C = DLAMC3( C, -A )
+ LBETA = C + QTR
+*
+* Now determine whether rounding or chopping occurs, by adding a
+* bit less than beta/2 and a bit more than beta/2 to a.
+*
+ B = LBETA
+ F = DLAMC3( B / 2, -B / 100 )
+ C = DLAMC3( F, A )
+ IF( C.EQ.A ) THEN
+ LRND = .TRUE.
+ ELSE
+ LRND = .FALSE.
+ END IF
+ F = DLAMC3( B / 2, B / 100 )
+ C = DLAMC3( F, A )
+ IF( ( LRND ) .AND. ( C.EQ.A ) )
+ $ LRND = .FALSE.
+*
+* Try and decide whether rounding is done in the IEEE 'round to
+* nearest' style. B/2 is half a unit in the last place of the two
+* numbers A and SAVEC. Furthermore, A is even, i.e. has last bit
+* zero, and SAVEC is odd. Thus adding B/2 to A should not change
+* A, but adding B/2 to SAVEC should change SAVEC.
+*
+ T1 = DLAMC3( B / 2, A )
+ T2 = DLAMC3( B / 2, SAVEC )
+ LIEEE1 = ( T1.EQ.A ) .AND. ( T2.GT.SAVEC ) .AND. LRND
+*
+* Now find the mantissa, t. It should be the integer part of
+* log to the base beta of a, however it is safer to determine t
+* by powering. So we find t as the smallest positive integer for
+* which
+*
+* fl( beta**t + 1.0 ) = 1.0.
+*
+ LT = 0
+ A = 1
+ C = 1
+*
+*+ WHILE( C.EQ.ONE )LOOP
+ 30 CONTINUE
+ IF( C.EQ.ONE ) THEN
+ LT = LT + 1
+ A = A*LBETA
+ C = DLAMC3( A, ONE )
+ C = DLAMC3( C, -A )
+ GO TO 30
+ END IF
+*+ END WHILE
+*
+ END IF
+*
+ BETA = LBETA
+ T = LT
+ RND = LRND
+ IEEE1 = LIEEE1
+ RETURN
+*
+* End of DLAMC1
+*
+ END
+*
+************************************************************************
+*
+ SUBROUTINE DLAMC2( BETA, T, RND, EPS, EMIN, RMIN, EMAX, RMAX )
+*
+* -- LAPACK auxiliary routine (version 3.0) --
+* Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
+* Courant Institute, Argonne National Lab, and Rice University
+* October 31, 1992
+*
+* .. Scalar Arguments ..
+ LOGICAL RND
+ INTEGER BETA, EMAX, EMIN, T
+ DOUBLE PRECISION EPS, RMAX, RMIN
+* ..
+*
+* Purpose
+* =======
+*
+* DLAMC2 determines the machine parameters specified in its argument
+* list.
+*
+* Arguments
+* =========
+*
+* BETA (output) INTEGER
+* The base of the machine.
+*
+* T (output) INTEGER
+* The number of ( BETA ) digits in the mantissa.
+*
+* RND (output) LOGICAL
+* Specifies whether proper rounding ( RND = .TRUE. ) or
+* chopping ( RND = .FALSE. ) occurs in addition. This may not
+* be a reliable guide to the way in which the machine performs
+* its arithmetic.
+*
+* EPS (output) DOUBLE PRECISION
+* The smallest positive number such that
+*
+* fl( 1.0 - EPS ) .LT. 1.0,
+*
+* where fl denotes the computed value.
+*
+* EMIN (output) INTEGER
+* The minimum exponent before (gradual) underflow occurs.
+*
+* RMIN (output) DOUBLE PRECISION
+* The smallest normalized number for the machine, given by
+* BASE**( EMIN - 1 ), where BASE is the floating point value
+* of BETA.
+*
+* EMAX (output) INTEGER
+* The maximum exponent before overflow occurs.
+*
+* RMAX (output) DOUBLE PRECISION
+* The largest positive number for the machine, given by
+* BASE**EMAX * ( 1 - EPS ), where BASE is the floating point
+* value of BETA.
+*
+* Further Details
+* ===============
+*
+* The computation of EPS is based on a routine PARANOIA by
+* W. Kahan of the University of California at Berkeley.
+*
+* =====================================================================
+*
+* .. Local Scalars ..
+ LOGICAL FIRST, IEEE, IWARN, LIEEE1, LRND
+ INTEGER GNMIN, GPMIN, I, LBETA, LEMAX, LEMIN, LT,
+ $ NGNMIN, NGPMIN
+ DOUBLE PRECISION A, B, C, HALF, LEPS, LRMAX, LRMIN, ONE, RBASE,
+ $ SIXTH, SMALL, THIRD, TWO, ZERO
+* ..
+* .. External Functions ..
+ DOUBLE PRECISION DLAMC3
+ EXTERNAL DLAMC3
+* ..
+* .. External Subroutines ..
+ EXTERNAL DLAMC1, DLAMC4, DLAMC5
+* ..
+* .. Intrinsic Functions ..
+ INTRINSIC ABS, MAX, MIN
+* ..
+* .. Save statement ..
+ SAVE FIRST, IWARN, LBETA, LEMAX, LEMIN, LEPS, LRMAX,
+ $ LRMIN, LT
+* ..
+* .. Data statements ..
+ DATA FIRST / .TRUE. / , IWARN / .FALSE. /
+* ..
+* .. Executable Statements ..
+*
+ IF( FIRST ) THEN
+ FIRST = .FALSE.
+ ZERO = 0
+ ONE = 1
+ TWO = 2
+*
+* LBETA, LT, LRND, LEPS, LEMIN and LRMIN are the local values of
+* BETA, T, RND, EPS, EMIN and RMIN.
+*
+* Throughout this routine we use the function DLAMC3 to ensure
+* that relevant values are stored and not held in registers, or
+* are not affected by optimizers.
+*
+* DLAMC1 returns the parameters LBETA, LT, LRND and LIEEE1.
+*
+ CALL DLAMC1( LBETA, LT, LRND, LIEEE1 )
+*
+* Start to find EPS.
+*
+ B = LBETA
+ A = B**( -LT )
+ LEPS = A
+*
+* Try some tricks to see whether or not this is the correct EPS.
+*
+ B = TWO / 3
+ HALF = ONE / 2
+ SIXTH = DLAMC3( B, -HALF )
+ THIRD = DLAMC3( SIXTH, SIXTH )
+ B = DLAMC3( THIRD, -HALF )
+ B = DLAMC3( B, SIXTH )
+ B = ABS( B )
+ IF( B.LT.LEPS )
+ $ B = LEPS
+*
+ LEPS = 1
+*
+*+ WHILE( ( LEPS.GT.B ).AND.( B.GT.ZERO ) )LOOP
+ 10 CONTINUE
+ IF( ( LEPS.GT.B ) .AND. ( B.GT.ZERO ) ) THEN
+ LEPS = B
+ C = DLAMC3( HALF*LEPS, ( TWO**5 )*( LEPS**2 ) )
+ C = DLAMC3( HALF, -C )
+ B = DLAMC3( HALF, C )
+ C = DLAMC3( HALF, -B )
+ B = DLAMC3( HALF, C )
+ GO TO 10
+ END IF
+*+ END WHILE
+*
+ IF( A.LT.LEPS )
+ $ LEPS = A
+*
+* Computation of EPS complete.
+*
+* Now find EMIN. Let A = + or - 1, and + or - (1 + BASE**(-3)).
+* Keep dividing A by BETA until (gradual) underflow occurs. This
+* is detected when we cannot recover the previous A.
+*
+ RBASE = ONE / LBETA
+ SMALL = ONE
+ DO 20 I = 1, 3
+ SMALL = DLAMC3( SMALL*RBASE, ZERO )
+ 20 CONTINUE
+ A = DLAMC3( ONE, SMALL )
+ CALL DLAMC4( NGPMIN, ONE, LBETA )
+ CALL DLAMC4( NGNMIN, -ONE, LBETA )
+ CALL DLAMC4( GPMIN, A, LBETA )
+ CALL DLAMC4( GNMIN, -A, LBETA )
+ IEEE = .FALSE.
+*
+ IF( ( NGPMIN.EQ.NGNMIN ) .AND. ( GPMIN.EQ.GNMIN ) ) THEN
+ IF( NGPMIN.EQ.GPMIN ) THEN
+ LEMIN = NGPMIN
+* ( Non twos-complement machines, no gradual underflow;
+* e.g., VAX )
+ ELSE IF( ( GPMIN-NGPMIN ).EQ.3 ) THEN
+ LEMIN = NGPMIN - 1 + LT
+ IEEE = .TRUE.
+* ( Non twos-complement machines, with gradual underflow;
+* e.g., IEEE standard followers )
+ ELSE
+ LEMIN = MIN( NGPMIN, GPMIN )
+* ( A guess; no known machine )
+ IWARN = .TRUE.
+ END IF
+*
+ ELSE IF( ( NGPMIN.EQ.GPMIN ) .AND. ( NGNMIN.EQ.GNMIN ) ) THEN
+ IF( ABS( NGPMIN-NGNMIN ).EQ.1 ) THEN
+ LEMIN = MAX( NGPMIN, NGNMIN )
+* ( Twos-complement machines, no gradual underflow;
+* e.g., CYBER 205 )
+ ELSE
+ LEMIN = MIN( NGPMIN, NGNMIN )
+* ( A guess; no known machine )
+ IWARN = .TRUE.
+ END IF
+*
+ ELSE IF( ( ABS( NGPMIN-NGNMIN ).EQ.1 ) .AND.
+ $ ( GPMIN.EQ.GNMIN ) ) THEN
+ IF( ( GPMIN-MIN( NGPMIN, NGNMIN ) ).EQ.3 ) THEN
+ LEMIN = MAX( NGPMIN, NGNMIN ) - 1 + LT
+* ( Twos-complement machines with gradual underflow;
+* no known machine )
+ ELSE
+ LEMIN = MIN( NGPMIN, NGNMIN )
+* ( A guess; no known machine )
+ IWARN = .TRUE.
+ END IF
+*
+ ELSE
+ LEMIN = MIN( NGPMIN, NGNMIN, GPMIN, GNMIN )
+* ( A guess; no known machine )
+ IWARN = .TRUE.
+ END IF
+***
+* Comment out this if block if EMIN is ok
+ IF( IWARN ) THEN
+ FIRST = .TRUE.
+ WRITE( 6, FMT = 9999 )LEMIN
+ END IF
+***
+*
+* Assume IEEE arithmetic if we found denormalised numbers above,
+* or if arithmetic seems to round in the IEEE style, determined
+* in routine DLAMC1. A true IEEE machine should have both things
+* true; however, faulty machines may have one or the other.
+*
+ IEEE = IEEE .OR. LIEEE1
+*
+* Compute RMIN by successive division by BETA. We could compute
+* RMIN as BASE**( EMIN - 1 ), but some machines underflow during
+* this computation.
+*
+ LRMIN = 1
+ DO 30 I = 1, 1 - LEMIN
+ LRMIN = DLAMC3( LRMIN*RBASE, ZERO )
+ 30 CONTINUE
+*
+* Finally, call DLAMC5 to compute EMAX and RMAX.
+*
+ CALL DLAMC5( LBETA, LT, LEMIN, IEEE, LEMAX, LRMAX )
+ END IF
+*
+ BETA = LBETA
+ T = LT
+ RND = LRND
+ EPS = LEPS
+ EMIN = LEMIN
+ RMIN = LRMIN
+ EMAX = LEMAX
+ RMAX = LRMAX
+*
+ RETURN
+*
+ 9999 FORMAT( / / ' WARNING. The value EMIN may be incorrect:-',
+ $ ' EMIN = ', I8, /
+ $ ' If, after inspection, the value EMIN looks',
+ $ ' acceptable please comment out ',
+ $ / ' the IF block as marked within the code of routine',
+ $ ' DLAMC2,', / ' otherwise supply EMIN explicitly.', / )
+*
+* End of DLAMC2
+*
+ END
+*
+************************************************************************
+*
+ DOUBLE PRECISION FUNCTION DLAMC3( A, B )
+*
+* -- LAPACK auxiliary routine (version 3.0) --
+* Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
+* Courant Institute, Argonne National Lab, and Rice University
+* October 31, 1992
+*
+* .. Scalar Arguments ..
+ DOUBLE PRECISION A, B
+* ..
+*
+* Purpose
+* =======
+*
+* DLAMC3 is intended to force A and B to be stored prior to doing
+* the addition of A and B , for use in situations where optimizers
+* might hold one of these in a register.
+*
+* Arguments
+* =========
+*
+* A, B (input) DOUBLE PRECISION
+* The values A and B.
+*
+* =====================================================================
+*
+* .. Executable Statements ..
+*
+ DLAMC3 = A + B
+*
+ RETURN
+*
+* End of DLAMC3
+*
+ END
+*
+************************************************************************
+*
+ SUBROUTINE DLAMC4( EMIN, START, BASE )
+*
+* -- LAPACK auxiliary routine (version 3.0) --
+* Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
+* Courant Institute, Argonne National Lab, and Rice University
+* October 31, 1992
+*
+* .. Scalar Arguments ..
+ INTEGER BASE, EMIN
+ DOUBLE PRECISION START
+* ..
+*
+* Purpose
+* =======
+*
+* DLAMC4 is a service routine for DLAMC2.
+*
+* Arguments
+* =========
+*
+* EMIN (output) EMIN
+* The minimum exponent before (gradual) underflow, computed by
+* setting A = START and dividing by BASE until the previous A
+* can not be recovered.
+*
+* START (input) DOUBLE PRECISION
+* The starting point for determining EMIN.
+*
+* BASE (input) INTEGER
+* The base of the machine.
+*
+* =====================================================================
+*
+* .. Local Scalars ..
+ INTEGER I
+ DOUBLE PRECISION A, B1, B2, C1, C2, D1, D2, ONE, RBASE, ZERO
+* ..
+* .. External Functions ..
+ DOUBLE PRECISION DLAMC3
+ EXTERNAL DLAMC3
+* ..
+* .. Executable Statements ..
+*
+ A = START
+ ONE = 1
+ RBASE = ONE / BASE
+ ZERO = 0
+ EMIN = 1
+ B1 = DLAMC3( A*RBASE, ZERO )
+ C1 = A
+ C2 = A
+ D1 = A
+ D2 = A
+*+ WHILE( ( C1.EQ.A ).AND.( C2.EQ.A ).AND.
+* $ ( D1.EQ.A ).AND.( D2.EQ.A ) )LOOP
+ 10 CONTINUE
+ IF( ( C1.EQ.A ) .AND. ( C2.EQ.A ) .AND. ( D1.EQ.A ) .AND.
+ $ ( D2.EQ.A ) ) THEN
+ EMIN = EMIN - 1
+ A = B1
+ B1 = DLAMC3( A / BASE, ZERO )
+ C1 = DLAMC3( B1*BASE, ZERO )
+ D1 = ZERO
+ DO 20 I = 1, BASE
+ D1 = D1 + B1
+ 20 CONTINUE
+ B2 = DLAMC3( A*RBASE, ZERO )
+ C2 = DLAMC3( B2 / RBASE, ZERO )
+ D2 = ZERO
+ DO 30 I = 1, BASE
+ D2 = D2 + B2
+ 30 CONTINUE
+ GO TO 10
+ END IF
+*+ END WHILE
+*
+ RETURN
+*
+* End of DLAMC4
+*
+ END
+*
+************************************************************************
+*
+ SUBROUTINE DLAMC5( BETA, P, EMIN, IEEE, EMAX, RMAX )
+*
+* -- LAPACK auxiliary routine (version 3.0) --
+* Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
+* Courant Institute, Argonne National Lab, and Rice University
+* October 31, 1992
+*
+* .. Scalar Arguments ..
+ LOGICAL IEEE
+ INTEGER BETA, EMAX, EMIN, P
+ DOUBLE PRECISION RMAX
+* ..
+*
+* Purpose
+* =======
+*
+* DLAMC5 attempts to compute RMAX, the largest machine floating-point
+* number, without overflow. It assumes that EMAX + abs(EMIN) sum
+* approximately to a power of 2. It will fail on machines where this
+* assumption does not hold, for example, the Cyber 205 (EMIN = -28625,
+* EMAX = 28718). It will also fail if the value supplied for EMIN is
+* too large (i.e. too close to zero), probably with overflow.
+*
+* Arguments
+* =========
+*
+* BETA (input) INTEGER
+* The base of floating-point arithmetic.
+*
+* P (input) INTEGER
+* The number of base BETA digits in the mantissa of a
+* floating-point value.
+*
+* EMIN (input) INTEGER
+* The minimum exponent before (gradual) underflow.
+*
+* IEEE (input) LOGICAL
+* A logical flag specifying whether or not the arithmetic
+* system is thought to comply with the IEEE standard.
+*
+* EMAX (output) INTEGER
+* The largest exponent before overflow
+*
+* RMAX (output) DOUBLE PRECISION
+* The largest machine floating-point number.
+*
+* =====================================================================
+*
+* .. Parameters ..
+ DOUBLE PRECISION ZERO, ONE
+ PARAMETER ( ZERO = 0.0D0, ONE = 1.0D0 )
+* ..
+* .. Local Scalars ..
+ INTEGER EXBITS, EXPSUM, I, LEXP, NBITS, TRY, UEXP
+ DOUBLE PRECISION OLDY, RECBAS, Y, Z
+* ..
+* .. External Functions ..
+ DOUBLE PRECISION DLAMC3
+ EXTERNAL DLAMC3
+* ..
+* .. Intrinsic Functions ..
+ INTRINSIC MOD
+* ..
+* .. Executable Statements ..
+*
+* First compute LEXP and UEXP, two powers of 2 that bound
+* abs(EMIN). We then assume that EMAX + abs(EMIN) will sum
+* approximately to the bound that is closest to abs(EMIN).
+* (EMAX is the exponent of the required number RMAX).
+*
+ LEXP = 1
+ EXBITS = 1
+ 10 CONTINUE
+ TRY = LEXP*2
+ IF( TRY.LE.( -EMIN ) ) THEN
+ LEXP = TRY
+ EXBITS = EXBITS + 1
+ GO TO 10
+ END IF
+ IF( LEXP.EQ.-EMIN ) THEN
+ UEXP = LEXP
+ ELSE
+ UEXP = TRY
+ EXBITS = EXBITS + 1
+ END IF
+*
+* Now -LEXP is less than or equal to EMIN, and -UEXP is greater
+* than or equal to EMIN. EXBITS is the number of bits needed to
+* store the exponent.
+*
+ IF( ( UEXP+EMIN ).GT.( -LEXP-EMIN ) ) THEN
+ EXPSUM = 2*LEXP
+ ELSE
+ EXPSUM = 2*UEXP
+ END IF
+*
+* EXPSUM is the exponent range, approximately equal to
+* EMAX - EMIN + 1 .
+*
+ EMAX = EXPSUM + EMIN - 1
+ NBITS = 1 + EXBITS + P
+*
+* NBITS is the total number of bits needed to store a
+* floating-point number.
+*
+ IF( ( MOD( NBITS, 2 ).EQ.1 ) .AND. ( BETA.EQ.2 ) ) THEN
+*
+* Either there are an odd number of bits used to store a
+* floating-point number, which is unlikely, or some bits are
+* not used in the representation of numbers, which is possible,
+* (e.g. Cray machines) or the mantissa has an implicit bit,
+* (e.g. IEEE machines, Dec Vax machines), which is perhaps the
+* most likely. We have to assume the last alternative.
+* If this is true, then we need to reduce EMAX by one because
+* there must be some way of representing zero in an implicit-bit
+* system. On machines like Cray, we are reducing EMAX by one
+* unnecessarily.
+*
+ EMAX = EMAX - 1
+ END IF
+*
+ IF( IEEE ) THEN
+*
+* Assume we are on an IEEE machine which reserves one exponent
+* for infinity and NaN.
+*
+ EMAX = EMAX - 1
+ END IF
+*
+* Now create RMAX, the largest machine number, which should
+* be equal to (1.0 - BETA**(-P)) * BETA**EMAX .
+*
+* First compute 1.0 - BETA**(-P), being careful that the
+* result is less than 1.0 .
+*
+ RECBAS = ONE / BETA
+ Z = BETA - ONE
+ Y = ZERO
+ DO 20 I = 1, P
+ Z = Z*RECBAS
+ IF( Y.LT.ONE )
+ $ OLDY = Y
+ Y = DLAMC3( Y, Z )
+ 20 CONTINUE
+ IF( Y.GE.ONE )
+ $ Y = OLDY
+*
+* Now multiply by BETA**EMAX to get RMAX.
+*
+ DO 30 I = 1, EMAX
+ Y = DLAMC3( Y*BETA, ZERO )
+ 30 CONTINUE
+*
+ RMAX = Y
+ RETURN
+*
+* End of DLAMC5
+*
+ END