summaryrefslogtreecommitdiff
path: root/2.3-1/src/fortran/lapack/dgges.f
diff options
context:
space:
mode:
Diffstat (limited to '2.3-1/src/fortran/lapack/dgges.f')
-rw-r--r--2.3-1/src/fortran/lapack/dgges.f550
1 files changed, 550 insertions, 0 deletions
diff --git a/2.3-1/src/fortran/lapack/dgges.f b/2.3-1/src/fortran/lapack/dgges.f
new file mode 100644
index 00000000..ce29aa52
--- /dev/null
+++ b/2.3-1/src/fortran/lapack/dgges.f
@@ -0,0 +1,550 @@
+ SUBROUTINE DGGES( JOBVSL, JOBVSR, SORT, DELCTG, N, A, LDA, B, LDB,
+ $ SDIM, ALPHAR, ALPHAI, BETA, VSL, LDVSL, VSR,
+ $ LDVSR, WORK, LWORK, BWORK, INFO )
+*
+* -- LAPACK driver routine (version 3.0) --
+* Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
+* Courant Institute, Argonne National Lab, and Rice University
+* June 30, 1999
+*
+* .. Scalar Arguments ..
+ CHARACTER JOBVSL, JOBVSR, SORT
+ INTEGER INFO, LDA, LDB, LDVSL, LDVSR, LWORK, N, SDIM
+* ..
+* .. Array Arguments ..
+ LOGICAL BWORK( * )
+ DOUBLE PRECISION A( LDA, * ), ALPHAI( * ), ALPHAR( * ),
+ $ B( LDB, * ), BETA( * ), VSL( LDVSL, * ),
+ $ VSR( LDVSR, * ), WORK( * )
+* ..
+* .. Function Arguments ..
+ LOGICAL DELCTG
+ EXTERNAL DELCTG
+* ..
+*
+* Purpose
+* =======
+*
+* DGGES computes for a pair of N-by-N real nonsymmetric matrices (A,B),
+* the generalized eigenvalues, the generalized real Schur form (S,T),
+* optionally, the left and/or right matrices of Schur vectors (VSL and
+* VSR). This gives the generalized Schur factorization
+*
+* (A,B) = ( (VSL)*S*(VSR)**T, (VSL)*T*(VSR)**T )
+*
+* Optionally, it also orders the eigenvalues so that a selected cluster
+* of eigenvalues appears in the leading diagonal blocks of the upper
+* quasi-triangular matrix S and the upper triangular matrix T.The
+* leading columns of VSL and VSR then form an orthonormal basis for the
+* corresponding left and right eigenspaces (deflating subspaces).
+*
+* (If only the generalized eigenvalues are needed, use the driver
+* DGGEV instead, which is faster.)
+*
+* A generalized eigenvalue for a pair of matrices (A,B) is a scalar w
+* or a ratio alpha/beta = w, such that A - w*B is singular. It is
+* usually represented as the pair (alpha,beta), as there is a
+* reasonable interpretation for beta=0 or both being zero.
+*
+* A pair of matrices (S,T) is in generalized real Schur form if T is
+* upper triangular with non-negative diagonal and S is block upper
+* triangular with 1-by-1 and 2-by-2 blocks. 1-by-1 blocks correspond
+* to real generalized eigenvalues, while 2-by-2 blocks of S will be
+* "standardized" by making the corresponding elements of T have the
+* form:
+* [ a 0 ]
+* [ 0 b ]
+*
+* and the pair of corresponding 2-by-2 blocks in S and T will have a
+* complex conjugate pair of generalized eigenvalues.
+*
+*
+* Arguments
+* =========
+*
+* JOBVSL (input) CHARACTER*1
+* = 'N': do not compute the left Schur vectors;
+* = 'V': compute the left Schur vectors.
+*
+* JOBVSR (input) CHARACTER*1
+* = 'N': do not compute the right Schur vectors;
+* = 'V': compute the right Schur vectors.
+*
+* SORT (input) CHARACTER*1
+* Specifies whether or not to order the eigenvalues on the
+* diagonal of the generalized Schur form.
+* = 'N': Eigenvalues are not ordered;
+* = 'S': Eigenvalues are ordered (see DELZTG);
+*
+* DELZTG (input) LOGICAL FUNCTION of three DOUBLE PRECISION arguments
+* DELZTG must be declared EXTERNAL in the calling subroutine.
+* If SORT = 'N', DELZTG is not referenced.
+* If SORT = 'S', DELZTG is used to select eigenvalues to sort
+* to the top left of the Schur form.
+* An eigenvalue (ALPHAR(j)+ALPHAI(j))/BETA(j) is selected if
+* DELZTG(ALPHAR(j),ALPHAI(j),BETA(j)) is true; i.e. if either
+* one of a complex conjugate pair of eigenvalues is selected,
+* then both complex eigenvalues are selected.
+*
+* Note that in the ill-conditioned case, a selected complex
+* eigenvalue may no longer satisfy DELZTG(ALPHAR(j),ALPHAI(j),
+* BETA(j)) = .TRUE. after ordering. INFO is to be set to N+2
+* in this case.
+*
+* N (input) INTEGER
+* The order of the matrices A, B, VSL, and VSR. N >= 0.
+*
+* A (input/output) DOUBLE PRECISION array, dimension (LDA, N)
+* On entry, the first of the pair of matrices.
+* On exit, A has been overwritten by its generalized Schur
+* form S.
+*
+* LDA (input) INTEGER
+* The leading dimension of A. LDA >= max(1,N).
+*
+* B (input/output) DOUBLE PRECISION array, dimension (LDB, N)
+* On entry, the second of the pair of matrices.
+* On exit, B has been overwritten by its generalized Schur
+* form T.
+*
+* LDB (input) INTEGER
+* The leading dimension of B. LDB >= max(1,N).
+*
+* SDIM (output) INTEGER
+* If SORT = 'N', SDIM = 0.
+* If SORT = 'S', SDIM = number of eigenvalues (after sorting)
+* for which DELZTG is true. (Complex conjugate pairs for which
+* DELZTG is true for either eigenvalue count as 2.)
+*
+* ALPHAR (output) DOUBLE PRECISION array, dimension (N)
+* ALPHAI (output) DOUBLE PRECISION array, dimension (N)
+* BETA (output) DOUBLE PRECISION array, dimension (N)
+* On exit, (ALPHAR(j) + ALPHAI(j)*i)/BETA(j), j=1,...,N, will
+* be the generalized eigenvalues. ALPHAR(j) + ALPHAI(j)*i,
+* and BETA(j),j=1,...,N are the diagonals of the complex Schur
+* form (S,T) that would result if the 2-by-2 diagonal blocks of
+* the real Schur form of (A,B) were further reduced to
+* triangular form using 2-by-2 complex unitary transformations.
+* If ALPHAI(j) is zero, then the j-th eigenvalue is real; if
+* positive, then the j-th and (j+1)-st eigenvalues are a
+* complex conjugate pair, with ALPHAI(j+1) negative.
+*
+* Note: the quotients ALPHAR(j)/BETA(j) and ALPHAI(j)/BETA(j)
+* may easily over- or underflow, and BETA(j) may even be zero.
+* Thus, the user should avoid naively computing the ratio.
+* However, ALPHAR and ALPHAI will be always less than and
+* usually comparable with norm(A) in magnitude, and BETA always
+* less than and usually comparable with norm(B).
+*
+* VSL (output) DOUBLE PRECISION array, dimension (LDVSL,N)
+* If JOBVSL = 'V', VSL will contain the left Schur vectors.
+* Not referenced if JOBVSL = 'N'.
+*
+* LDVSL (input) INTEGER
+* The leading dimension of the matrix VSL. LDVSL >=1, and
+* if JOBVSL = 'V', LDVSL >= N.
+*
+* VSR (output) DOUBLE PRECISION array, dimension (LDVSR,N)
+* If JOBVSR = 'V', VSR will contain the right Schur vectors.
+* Not referenced if JOBVSR = 'N'.
+*
+* LDVSR (input) INTEGER
+* The leading dimension of the matrix VSR. LDVSR >= 1, and
+* if JOBVSR = 'V', LDVSR >= N.
+*
+* WORK (workspace/output) DOUBLE PRECISION array, dimension (LWORK)
+* On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
+*
+* LWORK (input) INTEGER
+* The dimension of the array WORK. LWORK >= 8*N+16.
+*
+* If LWORK = -1, then a workspace query is assumed; the routine
+* only calculates the optimal size of the WORK array, returns
+* this value as the first entry of the WORK array, and no error
+* message related to LWORK is issued by XERBLA.
+*
+* BWORK (workspace) LOGICAL array, dimension (N)
+* Not referenced if SORT = 'N'.
+*
+* INFO (output) INTEGER
+* = 0: successful exit
+* < 0: if INFO = -i, the i-th argument had an illegal value.
+* = 1,...,N:
+* The QZ iteration failed. (A,B) are not in Schur
+* form, but ALPHAR(j), ALPHAI(j), and BETA(j) should
+* be correct for j=INFO+1,...,N.
+* > N: =N+1: other than QZ iteration failed in DHGEQZ.
+* =N+2: after reordering, roundoff changed values of
+* some complex eigenvalues so that leading
+* eigenvalues in the Generalized Schur form no
+* longer satisfy DELZTG=.TRUE. This could also
+* be caused due to scaling.
+* =N+3: reordering failed in DTGSEN.
+*
+* =====================================================================
+*
+* .. Parameters ..
+ DOUBLE PRECISION ZERO, ONE
+ PARAMETER ( ZERO = 0.0D+0, ONE = 1.0D+0 )
+* ..
+* .. Local Scalars ..
+ LOGICAL CURSL, ILASCL, ILBSCL, ILVSL, ILVSR, LASTSL,
+ $ LQUERY, LST2SL, WANTST
+ INTEGER I, ICOLS, IERR, IHI, IJOBVL, IJOBVR, ILEFT,
+ $ ILO, IP, IRIGHT, IROWS, ITAU, IWRK, MAXWRK,
+ $ MINWRK
+ DOUBLE PRECISION ANRM, ANRMTO, BIGNUM, BNRM, BNRMTO, EPS, PVSL,
+ $ PVSR, SAFMAX, SAFMIN, SMLNUM
+* ..
+* .. Local Arrays ..
+ INTEGER IDUM( 1 )
+ DOUBLE PRECISION DIF( 2 )
+* ..
+* .. External Subroutines ..
+ EXTERNAL DGEQRF, DGGBAK, DGGBAL, DGGHRD, DHGEQZ, DLABAD,
+ $ DLACPY, DLASCL, DLASET, DORGQR, DORMQR, DTGSEN,
+ $ XERBLA
+* ..
+* .. External Functions ..
+ LOGICAL LSAME
+ INTEGER ILAENV
+ DOUBLE PRECISION DLAMCH, DLANGE
+ EXTERNAL LSAME, ILAENV, DLAMCH, DLANGE
+* ..
+* .. Intrinsic Functions ..
+ INTRINSIC ABS, MAX, SQRT
+* ..
+* .. Executable Statements ..
+*
+* Decode the input arguments
+*
+ IF( LSAME( JOBVSL, 'N' ) ) THEN
+ IJOBVL = 1
+ ILVSL = .FALSE.
+ ELSE IF( LSAME( JOBVSL, 'V' ) ) THEN
+ IJOBVL = 2
+ ILVSL = .TRUE.
+ ELSE
+ IJOBVL = -1
+ ILVSL = .FALSE.
+ END IF
+*
+ IF( LSAME( JOBVSR, 'N' ) ) THEN
+ IJOBVR = 1
+ ILVSR = .FALSE.
+ ELSE IF( LSAME( JOBVSR, 'V' ) ) THEN
+ IJOBVR = 2
+ ILVSR = .TRUE.
+ ELSE
+ IJOBVR = -1
+ ILVSR = .FALSE.
+ END IF
+*
+ WANTST = LSAME( SORT, 'S' )
+*
+* Test the input arguments
+*
+ INFO = 0
+ LQUERY = ( LWORK.EQ.-1 )
+ IF( IJOBVL.LE.0 ) THEN
+ INFO = -1
+ ELSE IF( IJOBVR.LE.0 ) THEN
+ INFO = -2
+ ELSE IF( ( .NOT.WANTST ) .AND. ( .NOT.LSAME( SORT, 'N' ) ) ) THEN
+ INFO = -3
+ ELSE IF( N.LT.0 ) THEN
+ INFO = -5
+ ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
+ INFO = -7
+ ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
+ INFO = -9
+ ELSE IF( LDVSL.LT.1 .OR. ( ILVSL .AND. LDVSL.LT.N ) ) THEN
+ INFO = -15
+ ELSE IF( LDVSR.LT.1 .OR. ( ILVSR .AND. LDVSR.LT.N ) ) THEN
+ INFO = -17
+ END IF
+*
+* Compute workspace
+* (Note: Comments in the code beginning "Workspace:" describe the
+* minimal amount of workspace needed at that point in the code,
+* as well as the preferred amount for good performance.
+* NB refers to the optimal block size for the immediately
+* following subroutine, as returned by ILAENV.)
+*
+ MINWRK = 1
+ IF( INFO.EQ.0 .AND. ( LWORK.GE.1 .OR. LQUERY ) ) THEN
+ MINWRK = 7*( N+1 ) + 16
+ MAXWRK = 7*( N+1 ) + N*ILAENV( 1, 'DGEQRF', ' ', N, 1, N, 0 ) +
+ $ 16
+ IF( ILVSL ) THEN
+ MAXWRK = MAX( MAXWRK, 7*( N+1 )+N*
+ $ ILAENV( 1, 'DORGQR', ' ', N, 1, N, -1 ) )
+ END IF
+ WORK( 1 ) = MAXWRK
+ END IF
+*
+ IF( LWORK.LT.MINWRK .AND. .NOT.LQUERY )
+ $ INFO = -19
+ IF( INFO.NE.0 ) THEN
+ CALL XERBLA( 'DGGES ', -INFO )
+ RETURN
+ ELSE IF( LQUERY ) THEN
+ RETURN
+ END IF
+*
+* Quick return if possible
+*
+ IF( N.EQ.0 ) THEN
+ SDIM = 0
+ RETURN
+ END IF
+*
+* Get machine constants
+*
+ EPS = DLAMCH( 'P' )
+ SAFMIN = DLAMCH( 'S' )
+ SAFMAX = ONE / SAFMIN
+ CALL DLABAD( SAFMIN, SAFMAX )
+ SMLNUM = SQRT( SAFMIN ) / EPS
+ BIGNUM = ONE / SMLNUM
+*
+* Scale A if max element outside range [SMLNUM,BIGNUM]
+*
+ ANRM = DLANGE( 'M', N, N, A, LDA, WORK )
+ ILASCL = .FALSE.
+ IF( ANRM.GT.ZERO .AND. ANRM.LT.SMLNUM ) THEN
+ ANRMTO = SMLNUM
+ ILASCL = .TRUE.
+ ELSE IF( ANRM.GT.BIGNUM ) THEN
+ ANRMTO = BIGNUM
+ ILASCL = .TRUE.
+ END IF
+ IF( ILASCL )
+ $ CALL DLASCL( 'G', 0, 0, ANRM, ANRMTO, N, N, A, LDA, IERR )
+*
+* Scale B if max element outside range [SMLNUM,BIGNUM]
+*
+ BNRM = DLANGE( 'M', N, N, B, LDB, WORK )
+ ILBSCL = .FALSE.
+ IF( BNRM.GT.ZERO .AND. BNRM.LT.SMLNUM ) THEN
+ BNRMTO = SMLNUM
+ ILBSCL = .TRUE.
+ ELSE IF( BNRM.GT.BIGNUM ) THEN
+ BNRMTO = BIGNUM
+ ILBSCL = .TRUE.
+ END IF
+ IF( ILBSCL )
+ $ CALL DLASCL( 'G', 0, 0, BNRM, BNRMTO, N, N, B, LDB, IERR )
+*
+* Permute the matrix to make it more nearly triangular
+* (Workspace: need 6*N + 2*N space for storing balancing factors)
+*
+ ILEFT = 1
+ IRIGHT = N + 1
+ IWRK = IRIGHT + N
+ CALL DGGBAL( 'P', N, A, LDA, B, LDB, ILO, IHI, WORK( ILEFT ),
+ $ WORK( IRIGHT ), WORK( IWRK ), IERR )
+*
+* Reduce B to triangular form (QR decomposition of B)
+* (Workspace: need N, prefer N*NB)
+*
+ IROWS = IHI + 1 - ILO
+ ICOLS = N + 1 - ILO
+ ITAU = IWRK
+ IWRK = ITAU + IROWS
+ CALL DGEQRF( IROWS, ICOLS, B( ILO, ILO ), LDB, WORK( ITAU ),
+ $ WORK( IWRK ), LWORK+1-IWRK, IERR )
+*
+* Apply the orthogonal transformation to matrix A
+* (Workspace: need N, prefer N*NB)
+*
+ CALL DORMQR( 'L', 'T', IROWS, ICOLS, IROWS, B( ILO, ILO ), LDB,
+ $ WORK( ITAU ), A( ILO, ILO ), LDA, WORK( IWRK ),
+ $ LWORK+1-IWRK, IERR )
+*
+* Initialize VSL
+* (Workspace: need N, prefer N*NB)
+*
+ IF( ILVSL ) THEN
+ CALL DLASET( 'Full', N, N, ZERO, ONE, VSL, LDVSL )
+ CALL DLACPY( 'L', IROWS-1, IROWS-1, B( ILO+1, ILO ), LDB,
+ $ VSL( ILO+1, ILO ), LDVSL )
+ CALL DORGQR( IROWS, IROWS, IROWS, VSL( ILO, ILO ), LDVSL,
+ $ WORK( ITAU ), WORK( IWRK ), LWORK+1-IWRK, IERR )
+ END IF
+*
+* Initialize VSR
+*
+ IF( ILVSR )
+ $ CALL DLASET( 'Full', N, N, ZERO, ONE, VSR, LDVSR )
+*
+* Reduce to generalized Hessenberg form
+* (Workspace: none needed)
+*
+ CALL DGGHRD( JOBVSL, JOBVSR, N, ILO, IHI, A, LDA, B, LDB, VSL,
+ $ LDVSL, VSR, LDVSR, IERR )
+*
+* Perform QZ algorithm, computing Schur vectors if desired
+* (Workspace: need N)
+*
+ IWRK = ITAU
+ CALL DHGEQZ( 'S', JOBVSL, JOBVSR, N, ILO, IHI, A, LDA, B, LDB,
+ $ ALPHAR, ALPHAI, BETA, VSL, LDVSL, VSR, LDVSR,
+ $ WORK( IWRK ), LWORK+1-IWRK, IERR )
+ IF( IERR.NE.0 ) THEN
+ IF( IERR.GT.0 .AND. IERR.LE.N ) THEN
+ INFO = IERR
+ ELSE IF( IERR.GT.N .AND. IERR.LE.2*N ) THEN
+ INFO = IERR - N
+ ELSE
+ INFO = N + 1
+ END IF
+ GO TO 50
+ END IF
+*
+* Sort eigenvalues ALPHA/BETA if desired
+* (Workspace: need 4*N+16 )
+*
+ SDIM = 0
+ IF( WANTST ) THEN
+*
+* Undo scaling on eigenvalues before DELZTGing
+*
+ IF( ILASCL ) THEN
+ CALL DLASCL( 'G', 0, 0, ANRMTO, ANRM, N, 1, ALPHAR, N,
+ $ IERR )
+ CALL DLASCL( 'G', 0, 0, ANRMTO, ANRM, N, 1, ALPHAI, N,
+ $ IERR )
+ END IF
+ IF( ILBSCL )
+ $ CALL DLASCL( 'G', 0, 0, BNRMTO, BNRM, N, 1, BETA, N, IERR )
+*
+* Select eigenvalues
+*
+ DO 10 I = 1, N
+ BWORK( I ) = DELCTG( ALPHAR( I ), ALPHAI( I ), BETA( I ) )
+ 10 CONTINUE
+*
+ CALL DTGSEN( 0, ILVSL, ILVSR, BWORK, N, A, LDA, B, LDB, ALPHAR,
+ $ ALPHAI, BETA, VSL, LDVSL, VSR, LDVSR, SDIM, PVSL,
+ $ PVSR, DIF, WORK( IWRK ), LWORK-IWRK+1, IDUM, 1,
+ $ IERR )
+ IF( IERR.EQ.1 )
+ $ INFO = N + 3
+*
+ END IF
+*
+* Apply back-permutation to VSL and VSR
+* (Workspace: none needed)
+*
+ IF( ILVSL )
+ $ CALL DGGBAK( 'P', 'L', N, ILO, IHI, WORK( ILEFT ),
+ $ WORK( IRIGHT ), N, VSL, LDVSL, IERR )
+*
+ IF( ILVSR )
+ $ CALL DGGBAK( 'P', 'R', N, ILO, IHI, WORK( ILEFT ),
+ $ WORK( IRIGHT ), N, VSR, LDVSR, IERR )
+*
+* Check if unscaling would cause over/underflow, if so, rescale
+* (ALPHAR(I),ALPHAI(I),BETA(I)) so BETA(I) is on the order of
+* B(I,I) and ALPHAR(I) and ALPHAI(I) are on the order of A(I,I)
+*
+ IF( ILASCL ) THEN
+ DO 20 I = 1, N
+ IF( ALPHAI( I ).NE.ZERO ) THEN
+ IF( ( ALPHAR( I ) / SAFMAX ).GT.( ANRMTO / ANRM ) .OR.
+ $ ( SAFMIN / ALPHAR( I ) ).GT.( ANRM / ANRMTO ) ) THEN
+ WORK( 1 ) = ABS( A( I, I ) / ALPHAR( I ) )
+ BETA( I ) = BETA( I )*WORK( 1 )
+ ALPHAR( I ) = ALPHAR( I )*WORK( 1 )
+ ALPHAI( I ) = ALPHAI( I )*WORK( 1 )
+ ELSE IF( ( ALPHAI( I ) / SAFMAX ).GT.
+ $ ( ANRMTO / ANRM ) .OR.
+ $ ( SAFMIN / ALPHAI( I ) ).GT.( ANRM / ANRMTO ) )
+ $ THEN
+ WORK( 1 ) = ABS( A( I, I+1 ) / ALPHAI( I ) )
+ BETA( I ) = BETA( I )*WORK( 1 )
+ ALPHAR( I ) = ALPHAR( I )*WORK( 1 )
+ ALPHAI( I ) = ALPHAI( I )*WORK( 1 )
+ END IF
+ END IF
+ 20 CONTINUE
+ END IF
+*
+ IF( ILBSCL ) THEN
+ DO 30 I = 1, N
+ IF( ALPHAI( I ).NE.ZERO ) THEN
+ IF( ( BETA( I ) / SAFMAX ).GT.( BNRMTO / BNRM ) .OR.
+ $ ( SAFMIN / BETA( I ) ).GT.( BNRM / BNRMTO ) ) THEN
+ WORK( 1 ) = ABS( B( I, I ) / BETA( I ) )
+ BETA( I ) = BETA( I )*WORK( 1 )
+ ALPHAR( I ) = ALPHAR( I )*WORK( 1 )
+ ALPHAI( I ) = ALPHAI( I )*WORK( 1 )
+ END IF
+ END IF
+ 30 CONTINUE
+ END IF
+*
+* Undo scaling
+*
+ IF( ILASCL ) THEN
+ CALL DLASCL( 'H', 0, 0, ANRMTO, ANRM, N, N, A, LDA, IERR )
+ CALL DLASCL( 'G', 0, 0, ANRMTO, ANRM, N, 1, ALPHAR, N, IERR )
+ CALL DLASCL( 'G', 0, 0, ANRMTO, ANRM, N, 1, ALPHAI, N, IERR )
+ END IF
+*
+ IF( ILBSCL ) THEN
+ CALL DLASCL( 'U', 0, 0, BNRMTO, BNRM, N, N, B, LDB, IERR )
+ CALL DLASCL( 'G', 0, 0, BNRMTO, BNRM, N, 1, BETA, N, IERR )
+ END IF
+*
+ IF( WANTST ) THEN
+*
+* Check if reordering is correct
+*
+ LASTSL = .TRUE.
+ LST2SL = .TRUE.
+ SDIM = 0
+ IP = 0
+ DO 40 I = 1, N
+ CURSL = DELCTG( ALPHAR( I ), ALPHAI( I ), BETA( I ) )
+ IF( ALPHAI( I ).EQ.ZERO ) THEN
+ IF( CURSL )
+ $ SDIM = SDIM + 1
+ IP = 0
+ IF( CURSL .AND. .NOT.LASTSL )
+ $ INFO = N + 2
+ ELSE
+ IF( IP.EQ.1 ) THEN
+*
+* Last eigenvalue of conjugate pair
+*
+ CURSL = CURSL .OR. LASTSL
+ LASTSL = CURSL
+ IF( CURSL )
+ $ SDIM = SDIM + 2
+ IP = -1
+ IF( CURSL .AND. .NOT.LST2SL )
+ $ INFO = N + 2
+ ELSE
+*
+* First eigenvalue of conjugate pair
+*
+ IP = 1
+ END IF
+ END IF
+ LST2SL = LASTSL
+ LASTSL = CURSL
+ 40 CONTINUE
+*
+ END IF
+*
+ 50 CONTINUE
+*
+ WORK( 1 ) = MAXWRK
+*
+ RETURN
+*
+* End of DGGES
+*
+ END