diff options
Diffstat (limited to '2.3-1/src/fortran/lapack/dggbak.f')
-rw-r--r-- | 2.3-1/src/fortran/lapack/dggbak.f | 220 |
1 files changed, 220 insertions, 0 deletions
diff --git a/2.3-1/src/fortran/lapack/dggbak.f b/2.3-1/src/fortran/lapack/dggbak.f new file mode 100644 index 00000000..8ed9fbd4 --- /dev/null +++ b/2.3-1/src/fortran/lapack/dggbak.f @@ -0,0 +1,220 @@ + SUBROUTINE DGGBAK( JOB, SIDE, N, ILO, IHI, LSCALE, RSCALE, M, V, + $ LDV, INFO ) +* +* -- LAPACK routine (version 3.1) -- +* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. +* November 2006 +* +* .. Scalar Arguments .. + CHARACTER JOB, SIDE + INTEGER IHI, ILO, INFO, LDV, M, N +* .. +* .. Array Arguments .. + DOUBLE PRECISION LSCALE( * ), RSCALE( * ), V( LDV, * ) +* .. +* +* Purpose +* ======= +* +* DGGBAK forms the right or left eigenvectors of a real generalized +* eigenvalue problem A*x = lambda*B*x, by backward transformation on +* the computed eigenvectors of the balanced pair of matrices output by +* DGGBAL. +* +* Arguments +* ========= +* +* JOB (input) CHARACTER*1 +* Specifies the type of backward transformation required: +* = 'N': do nothing, return immediately; +* = 'P': do backward transformation for permutation only; +* = 'S': do backward transformation for scaling only; +* = 'B': do backward transformations for both permutation and +* scaling. +* JOB must be the same as the argument JOB supplied to DGGBAL. +* +* SIDE (input) CHARACTER*1 +* = 'R': V contains right eigenvectors; +* = 'L': V contains left eigenvectors. +* +* N (input) INTEGER +* The number of rows of the matrix V. N >= 0. +* +* ILO (input) INTEGER +* IHI (input) INTEGER +* The integers ILO and IHI determined by DGGBAL. +* 1 <= ILO <= IHI <= N, if N > 0; ILO=1 and IHI=0, if N=0. +* +* LSCALE (input) DOUBLE PRECISION array, dimension (N) +* Details of the permutations and/or scaling factors applied +* to the left side of A and B, as returned by DGGBAL. +* +* RSCALE (input) DOUBLE PRECISION array, dimension (N) +* Details of the permutations and/or scaling factors applied +* to the right side of A and B, as returned by DGGBAL. +* +* M (input) INTEGER +* The number of columns of the matrix V. M >= 0. +* +* V (input/output) DOUBLE PRECISION array, dimension (LDV,M) +* On entry, the matrix of right or left eigenvectors to be +* transformed, as returned by DTGEVC. +* On exit, V is overwritten by the transformed eigenvectors. +* +* LDV (input) INTEGER +* The leading dimension of the matrix V. LDV >= max(1,N). +* +* INFO (output) INTEGER +* = 0: successful exit. +* < 0: if INFO = -i, the i-th argument had an illegal value. +* +* Further Details +* =============== +* +* See R.C. Ward, Balancing the generalized eigenvalue problem, +* SIAM J. Sci. Stat. Comp. 2 (1981), 141-152. +* +* ===================================================================== +* +* .. Local Scalars .. + LOGICAL LEFTV, RIGHTV + INTEGER I, K +* .. +* .. External Functions .. + LOGICAL LSAME + EXTERNAL LSAME +* .. +* .. External Subroutines .. + EXTERNAL DSCAL, DSWAP, XERBLA +* .. +* .. Intrinsic Functions .. + INTRINSIC MAX +* .. +* .. Executable Statements .. +* +* Test the input parameters +* + RIGHTV = LSAME( SIDE, 'R' ) + LEFTV = LSAME( SIDE, 'L' ) +* + INFO = 0 + IF( .NOT.LSAME( JOB, 'N' ) .AND. .NOT.LSAME( JOB, 'P' ) .AND. + $ .NOT.LSAME( JOB, 'S' ) .AND. .NOT.LSAME( JOB, 'B' ) ) THEN + INFO = -1 + ELSE IF( .NOT.RIGHTV .AND. .NOT.LEFTV ) THEN + INFO = -2 + ELSE IF( N.LT.0 ) THEN + INFO = -3 + ELSE IF( ILO.LT.1 ) THEN + INFO = -4 + ELSE IF( N.EQ.0 .AND. IHI.EQ.0 .AND. ILO.NE.1 ) THEN + INFO = -4 + ELSE IF( N.GT.0 .AND. ( IHI.LT.ILO .OR. IHI.GT.MAX( 1, N ) ) ) + $ THEN + INFO = -5 + ELSE IF( N.EQ.0 .AND. ILO.EQ.1 .AND. IHI.NE.0 ) THEN + INFO = -5 + ELSE IF( M.LT.0 ) THEN + INFO = -8 + ELSE IF( LDV.LT.MAX( 1, N ) ) THEN + INFO = -10 + END IF + IF( INFO.NE.0 ) THEN + CALL XERBLA( 'DGGBAK', -INFO ) + RETURN + END IF +* +* Quick return if possible +* + IF( N.EQ.0 ) + $ RETURN + IF( M.EQ.0 ) + $ RETURN + IF( LSAME( JOB, 'N' ) ) + $ RETURN +* + IF( ILO.EQ.IHI ) + $ GO TO 30 +* +* Backward balance +* + IF( LSAME( JOB, 'S' ) .OR. LSAME( JOB, 'B' ) ) THEN +* +* Backward transformation on right eigenvectors +* + IF( RIGHTV ) THEN + DO 10 I = ILO, IHI + CALL DSCAL( M, RSCALE( I ), V( I, 1 ), LDV ) + 10 CONTINUE + END IF +* +* Backward transformation on left eigenvectors +* + IF( LEFTV ) THEN + DO 20 I = ILO, IHI + CALL DSCAL( M, LSCALE( I ), V( I, 1 ), LDV ) + 20 CONTINUE + END IF + END IF +* +* Backward permutation +* + 30 CONTINUE + IF( LSAME( JOB, 'P' ) .OR. LSAME( JOB, 'B' ) ) THEN +* +* Backward permutation on right eigenvectors +* + IF( RIGHTV ) THEN + IF( ILO.EQ.1 ) + $ GO TO 50 +* + DO 40 I = ILO - 1, 1, -1 + K = RSCALE( I ) + IF( K.EQ.I ) + $ GO TO 40 + CALL DSWAP( M, V( I, 1 ), LDV, V( K, 1 ), LDV ) + 40 CONTINUE +* + 50 CONTINUE + IF( IHI.EQ.N ) + $ GO TO 70 + DO 60 I = IHI + 1, N + K = RSCALE( I ) + IF( K.EQ.I ) + $ GO TO 60 + CALL DSWAP( M, V( I, 1 ), LDV, V( K, 1 ), LDV ) + 60 CONTINUE + END IF +* +* Backward permutation on left eigenvectors +* + 70 CONTINUE + IF( LEFTV ) THEN + IF( ILO.EQ.1 ) + $ GO TO 90 + DO 80 I = ILO - 1, 1, -1 + K = LSCALE( I ) + IF( K.EQ.I ) + $ GO TO 80 + CALL DSWAP( M, V( I, 1 ), LDV, V( K, 1 ), LDV ) + 80 CONTINUE +* + 90 CONTINUE + IF( IHI.EQ.N ) + $ GO TO 110 + DO 100 I = IHI + 1, N + K = LSCALE( I ) + IF( K.EQ.I ) + $ GO TO 100 + CALL DSWAP( M, V( I, 1 ), LDV, V( K, 1 ), LDV ) + 100 CONTINUE + END IF + END IF +* + 110 CONTINUE +* + RETURN +* +* End of DGGBAK +* + END |