diff options
Diffstat (limited to '2.3-1/src/fortran/lapack/dgelsy.f')
-rw-r--r-- | 2.3-1/src/fortran/lapack/dgelsy.f | 391 |
1 files changed, 391 insertions, 0 deletions
diff --git a/2.3-1/src/fortran/lapack/dgelsy.f b/2.3-1/src/fortran/lapack/dgelsy.f new file mode 100644 index 00000000..4334650f --- /dev/null +++ b/2.3-1/src/fortran/lapack/dgelsy.f @@ -0,0 +1,391 @@ + SUBROUTINE DGELSY( M, N, NRHS, A, LDA, B, LDB, JPVT, RCOND, RANK, + $ WORK, LWORK, INFO ) +* +* -- LAPACK driver routine (version 3.1) -- +* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. +* November 2006 +* +* .. Scalar Arguments .. + INTEGER INFO, LDA, LDB, LWORK, M, N, NRHS, RANK + DOUBLE PRECISION RCOND +* .. +* .. Array Arguments .. + INTEGER JPVT( * ) + DOUBLE PRECISION A( LDA, * ), B( LDB, * ), WORK( * ) +* .. +* +* Purpose +* ======= +* +* DGELSY computes the minimum-norm solution to a real linear least +* squares problem: +* minimize || A * X - B || +* using a complete orthogonal factorization of A. A is an M-by-N +* matrix which may be rank-deficient. +* +* Several right hand side vectors b and solution vectors x can be +* handled in a single call; they are stored as the columns of the +* M-by-NRHS right hand side matrix B and the N-by-NRHS solution +* matrix X. +* +* The routine first computes a QR factorization with column pivoting: +* A * P = Q * [ R11 R12 ] +* [ 0 R22 ] +* with R11 defined as the largest leading submatrix whose estimated +* condition number is less than 1/RCOND. The order of R11, RANK, +* is the effective rank of A. +* +* Then, R22 is considered to be negligible, and R12 is annihilated +* by orthogonal transformations from the right, arriving at the +* complete orthogonal factorization: +* A * P = Q * [ T11 0 ] * Z +* [ 0 0 ] +* The minimum-norm solution is then +* X = P * Z' [ inv(T11)*Q1'*B ] +* [ 0 ] +* where Q1 consists of the first RANK columns of Q. +* +* This routine is basically identical to the original xGELSX except +* three differences: +* o The call to the subroutine xGEQPF has been substituted by the +* the call to the subroutine xGEQP3. This subroutine is a Blas-3 +* version of the QR factorization with column pivoting. +* o Matrix B (the right hand side) is updated with Blas-3. +* o The permutation of matrix B (the right hand side) is faster and +* more simple. +* +* Arguments +* ========= +* +* M (input) INTEGER +* The number of rows of the matrix A. M >= 0. +* +* N (input) INTEGER +* The number of columns of the matrix A. N >= 0. +* +* NRHS (input) INTEGER +* The number of right hand sides, i.e., the number of +* columns of matrices B and X. NRHS >= 0. +* +* A (input/output) DOUBLE PRECISION array, dimension (LDA,N) +* On entry, the M-by-N matrix A. +* On exit, A has been overwritten by details of its +* complete orthogonal factorization. +* +* LDA (input) INTEGER +* The leading dimension of the array A. LDA >= max(1,M). +* +* B (input/output) DOUBLE PRECISION array, dimension (LDB,NRHS) +* On entry, the M-by-NRHS right hand side matrix B. +* On exit, the N-by-NRHS solution matrix X. +* +* LDB (input) INTEGER +* The leading dimension of the array B. LDB >= max(1,M,N). +* +* JPVT (input/output) INTEGER array, dimension (N) +* On entry, if JPVT(i) .ne. 0, the i-th column of A is permuted +* to the front of AP, otherwise column i is a free column. +* On exit, if JPVT(i) = k, then the i-th column of AP +* was the k-th column of A. +* +* RCOND (input) DOUBLE PRECISION +* RCOND is used to determine the effective rank of A, which +* is defined as the order of the largest leading triangular +* submatrix R11 in the QR factorization with pivoting of A, +* whose estimated condition number < 1/RCOND. +* +* RANK (output) INTEGER +* The effective rank of A, i.e., the order of the submatrix +* R11. This is the same as the order of the submatrix T11 +* in the complete orthogonal factorization of A. +* +* WORK (workspace/output) DOUBLE PRECISION array, dimension (MAX(1,LWORK)) +* On exit, if INFO = 0, WORK(1) returns the optimal LWORK. +* +* LWORK (input) INTEGER +* The dimension of the array WORK. +* The unblocked strategy requires that: +* LWORK >= MAX( MN+3*N+1, 2*MN+NRHS ), +* where MN = min( M, N ). +* The block algorithm requires that: +* LWORK >= MAX( MN+2*N+NB*(N+1), 2*MN+NB*NRHS ), +* where NB is an upper bound on the blocksize returned +* by ILAENV for the routines DGEQP3, DTZRZF, STZRQF, DORMQR, +* and DORMRZ. +* +* If LWORK = -1, then a workspace query is assumed; the routine +* only calculates the optimal size of the WORK array, returns +* this value as the first entry of the WORK array, and no error +* message related to LWORK is issued by XERBLA. +* +* INFO (output) INTEGER +* = 0: successful exit +* < 0: If INFO = -i, the i-th argument had an illegal value. +* +* Further Details +* =============== +* +* Based on contributions by +* A. Petitet, Computer Science Dept., Univ. of Tenn., Knoxville, USA +* E. Quintana-Orti, Depto. de Informatica, Universidad Jaime I, Spain +* G. Quintana-Orti, Depto. de Informatica, Universidad Jaime I, Spain +* +* ===================================================================== +* +* .. Parameters .. + INTEGER IMAX, IMIN + PARAMETER ( IMAX = 1, IMIN = 2 ) + DOUBLE PRECISION ZERO, ONE + PARAMETER ( ZERO = 0.0D+0, ONE = 1.0D+0 ) +* .. +* .. Local Scalars .. + LOGICAL LQUERY + INTEGER I, IASCL, IBSCL, ISMAX, ISMIN, J, LWKMIN, + $ LWKOPT, MN, NB, NB1, NB2, NB3, NB4 + DOUBLE PRECISION ANRM, BIGNUM, BNRM, C1, C2, S1, S2, SMAX, + $ SMAXPR, SMIN, SMINPR, SMLNUM, WSIZE +* .. +* .. External Functions .. + INTEGER ILAENV + DOUBLE PRECISION DLAMCH, DLANGE + EXTERNAL ILAENV, DLAMCH, DLANGE +* .. +* .. External Subroutines .. + EXTERNAL DCOPY, DGEQP3, DLABAD, DLAIC1, DLASCL, DLASET, + $ DORMQR, DORMRZ, DTRSM, DTZRZF, XERBLA +* .. +* .. Intrinsic Functions .. + INTRINSIC ABS, MAX, MIN +* .. +* .. Executable Statements .. +* + MN = MIN( M, N ) + ISMIN = MN + 1 + ISMAX = 2*MN + 1 +* +* Test the input arguments. +* + INFO = 0 + LQUERY = ( LWORK.EQ.-1 ) + IF( M.LT.0 ) THEN + INFO = -1 + ELSE IF( N.LT.0 ) THEN + INFO = -2 + ELSE IF( NRHS.LT.0 ) THEN + INFO = -3 + ELSE IF( LDA.LT.MAX( 1, M ) ) THEN + INFO = -5 + ELSE IF( LDB.LT.MAX( 1, M, N ) ) THEN + INFO = -7 + END IF +* +* Figure out optimal block size +* + IF( INFO.EQ.0 ) THEN + IF( MN.EQ.0 .OR. NRHS.EQ.0 ) THEN + LWKMIN = 1 + LWKOPT = 1 + ELSE + NB1 = ILAENV( 1, 'DGEQRF', ' ', M, N, -1, -1 ) + NB2 = ILAENV( 1, 'DGERQF', ' ', M, N, -1, -1 ) + NB3 = ILAENV( 1, 'DORMQR', ' ', M, N, NRHS, -1 ) + NB4 = ILAENV( 1, 'DORMRQ', ' ', M, N, NRHS, -1 ) + NB = MAX( NB1, NB2, NB3, NB4 ) + LWKMIN = MN + MAX( 2*MN, N + 1, MN + NRHS ) + LWKOPT = MAX( LWKMIN, + $ MN + 2*N + NB*( N + 1 ), 2*MN + NB*NRHS ) + END IF + WORK( 1 ) = LWKOPT +* + IF( LWORK.LT.LWKMIN .AND. .NOT.LQUERY ) THEN + INFO = -12 + END IF + END IF +* + IF( INFO.NE.0 ) THEN + CALL XERBLA( 'DGELSY', -INFO ) + RETURN + ELSE IF( LQUERY ) THEN + RETURN + END IF +* +* Quick return if possible +* + IF( MN.EQ.0 .OR. NRHS.EQ.0 ) THEN + RANK = 0 + RETURN + END IF +* +* Get machine parameters +* + SMLNUM = DLAMCH( 'S' ) / DLAMCH( 'P' ) + BIGNUM = ONE / SMLNUM + CALL DLABAD( SMLNUM, BIGNUM ) +* +* Scale A, B if max entries outside range [SMLNUM,BIGNUM] +* + ANRM = DLANGE( 'M', M, N, A, LDA, WORK ) + IASCL = 0 + IF( ANRM.GT.ZERO .AND. ANRM.LT.SMLNUM ) THEN +* +* Scale matrix norm up to SMLNUM +* + CALL DLASCL( 'G', 0, 0, ANRM, SMLNUM, M, N, A, LDA, INFO ) + IASCL = 1 + ELSE IF( ANRM.GT.BIGNUM ) THEN +* +* Scale matrix norm down to BIGNUM +* + CALL DLASCL( 'G', 0, 0, ANRM, BIGNUM, M, N, A, LDA, INFO ) + IASCL = 2 + ELSE IF( ANRM.EQ.ZERO ) THEN +* +* Matrix all zero. Return zero solution. +* + CALL DLASET( 'F', MAX( M, N ), NRHS, ZERO, ZERO, B, LDB ) + RANK = 0 + GO TO 70 + END IF +* + BNRM = DLANGE( 'M', M, NRHS, B, LDB, WORK ) + IBSCL = 0 + IF( BNRM.GT.ZERO .AND. BNRM.LT.SMLNUM ) THEN +* +* Scale matrix norm up to SMLNUM +* + CALL DLASCL( 'G', 0, 0, BNRM, SMLNUM, M, NRHS, B, LDB, INFO ) + IBSCL = 1 + ELSE IF( BNRM.GT.BIGNUM ) THEN +* +* Scale matrix norm down to BIGNUM +* + CALL DLASCL( 'G', 0, 0, BNRM, BIGNUM, M, NRHS, B, LDB, INFO ) + IBSCL = 2 + END IF +* +* Compute QR factorization with column pivoting of A: +* A * P = Q * R +* + CALL DGEQP3( M, N, A, LDA, JPVT, WORK( 1 ), WORK( MN+1 ), + $ LWORK-MN, INFO ) + WSIZE = MN + WORK( MN+1 ) +* +* workspace: MN+2*N+NB*(N+1). +* Details of Householder rotations stored in WORK(1:MN). +* +* Determine RANK using incremental condition estimation +* + WORK( ISMIN ) = ONE + WORK( ISMAX ) = ONE + SMAX = ABS( A( 1, 1 ) ) + SMIN = SMAX + IF( ABS( A( 1, 1 ) ).EQ.ZERO ) THEN + RANK = 0 + CALL DLASET( 'F', MAX( M, N ), NRHS, ZERO, ZERO, B, LDB ) + GO TO 70 + ELSE + RANK = 1 + END IF +* + 10 CONTINUE + IF( RANK.LT.MN ) THEN + I = RANK + 1 + CALL DLAIC1( IMIN, RANK, WORK( ISMIN ), SMIN, A( 1, I ), + $ A( I, I ), SMINPR, S1, C1 ) + CALL DLAIC1( IMAX, RANK, WORK( ISMAX ), SMAX, A( 1, I ), + $ A( I, I ), SMAXPR, S2, C2 ) +* + IF( SMAXPR*RCOND.LE.SMINPR ) THEN + DO 20 I = 1, RANK + WORK( ISMIN+I-1 ) = S1*WORK( ISMIN+I-1 ) + WORK( ISMAX+I-1 ) = S2*WORK( ISMAX+I-1 ) + 20 CONTINUE + WORK( ISMIN+RANK ) = C1 + WORK( ISMAX+RANK ) = C2 + SMIN = SMINPR + SMAX = SMAXPR + RANK = RANK + 1 + GO TO 10 + END IF + END IF +* +* workspace: 3*MN. +* +* Logically partition R = [ R11 R12 ] +* [ 0 R22 ] +* where R11 = R(1:RANK,1:RANK) +* +* [R11,R12] = [ T11, 0 ] * Y +* + IF( RANK.LT.N ) + $ CALL DTZRZF( RANK, N, A, LDA, WORK( MN+1 ), WORK( 2*MN+1 ), + $ LWORK-2*MN, INFO ) +* +* workspace: 2*MN. +* Details of Householder rotations stored in WORK(MN+1:2*MN) +* +* B(1:M,1:NRHS) := Q' * B(1:M,1:NRHS) +* + CALL DORMQR( 'Left', 'Transpose', M, NRHS, MN, A, LDA, WORK( 1 ), + $ B, LDB, WORK( 2*MN+1 ), LWORK-2*MN, INFO ) + WSIZE = MAX( WSIZE, 2*MN+WORK( 2*MN+1 ) ) +* +* workspace: 2*MN+NB*NRHS. +* +* B(1:RANK,1:NRHS) := inv(T11) * B(1:RANK,1:NRHS) +* + CALL DTRSM( 'Left', 'Upper', 'No transpose', 'Non-unit', RANK, + $ NRHS, ONE, A, LDA, B, LDB ) +* + DO 40 J = 1, NRHS + DO 30 I = RANK + 1, N + B( I, J ) = ZERO + 30 CONTINUE + 40 CONTINUE +* +* B(1:N,1:NRHS) := Y' * B(1:N,1:NRHS) +* + IF( RANK.LT.N ) THEN + CALL DORMRZ( 'Left', 'Transpose', N, NRHS, RANK, N-RANK, A, + $ LDA, WORK( MN+1 ), B, LDB, WORK( 2*MN+1 ), + $ LWORK-2*MN, INFO ) + END IF +* +* workspace: 2*MN+NRHS. +* +* B(1:N,1:NRHS) := P * B(1:N,1:NRHS) +* + DO 60 J = 1, NRHS + DO 50 I = 1, N + WORK( JPVT( I ) ) = B( I, J ) + 50 CONTINUE + CALL DCOPY( N, WORK( 1 ), 1, B( 1, J ), 1 ) + 60 CONTINUE +* +* workspace: N. +* +* Undo scaling +* + IF( IASCL.EQ.1 ) THEN + CALL DLASCL( 'G', 0, 0, ANRM, SMLNUM, N, NRHS, B, LDB, INFO ) + CALL DLASCL( 'U', 0, 0, SMLNUM, ANRM, RANK, RANK, A, LDA, + $ INFO ) + ELSE IF( IASCL.EQ.2 ) THEN + CALL DLASCL( 'G', 0, 0, ANRM, BIGNUM, N, NRHS, B, LDB, INFO ) + CALL DLASCL( 'U', 0, 0, BIGNUM, ANRM, RANK, RANK, A, LDA, + $ INFO ) + END IF + IF( IBSCL.EQ.1 ) THEN + CALL DLASCL( 'G', 0, 0, SMLNUM, BNRM, N, NRHS, B, LDB, INFO ) + ELSE IF( IBSCL.EQ.2 ) THEN + CALL DLASCL( 'G', 0, 0, BIGNUM, BNRM, N, NRHS, B, LDB, INFO ) + END IF +* + 70 CONTINUE + WORK( 1 ) = LWKOPT +* + RETURN +* +* End of DGELSY +* + END |