summaryrefslogtreecommitdiff
path: root/2.3-1/src/fortran/lapack/dgels.f
diff options
context:
space:
mode:
Diffstat (limited to '2.3-1/src/fortran/lapack/dgels.f')
-rw-r--r--2.3-1/src/fortran/lapack/dgels.f422
1 files changed, 422 insertions, 0 deletions
diff --git a/2.3-1/src/fortran/lapack/dgels.f b/2.3-1/src/fortran/lapack/dgels.f
new file mode 100644
index 00000000..4fa1e229
--- /dev/null
+++ b/2.3-1/src/fortran/lapack/dgels.f
@@ -0,0 +1,422 @@
+ SUBROUTINE DGELS( TRANS, M, N, NRHS, A, LDA, B, LDB, WORK, LWORK,
+ $ INFO )
+*
+* -- LAPACK driver routine (version 3.1) --
+* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd..
+* November 2006
+*
+* .. Scalar Arguments ..
+ CHARACTER TRANS
+ INTEGER INFO, LDA, LDB, LWORK, M, N, NRHS
+* ..
+* .. Array Arguments ..
+ DOUBLE PRECISION A( LDA, * ), B( LDB, * ), WORK( * )
+* ..
+*
+* Purpose
+* =======
+*
+* DGELS solves overdetermined or underdetermined real linear systems
+* involving an M-by-N matrix A, or its transpose, using a QR or LQ
+* factorization of A. It is assumed that A has full rank.
+*
+* The following options are provided:
+*
+* 1. If TRANS = 'N' and m >= n: find the least squares solution of
+* an overdetermined system, i.e., solve the least squares problem
+* minimize || B - A*X ||.
+*
+* 2. If TRANS = 'N' and m < n: find the minimum norm solution of
+* an underdetermined system A * X = B.
+*
+* 3. If TRANS = 'T' and m >= n: find the minimum norm solution of
+* an undetermined system A**T * X = B.
+*
+* 4. If TRANS = 'T' and m < n: find the least squares solution of
+* an overdetermined system, i.e., solve the least squares problem
+* minimize || B - A**T * X ||.
+*
+* Several right hand side vectors b and solution vectors x can be
+* handled in a single call; they are stored as the columns of the
+* M-by-NRHS right hand side matrix B and the N-by-NRHS solution
+* matrix X.
+*
+* Arguments
+* =========
+*
+* TRANS (input) CHARACTER*1
+* = 'N': the linear system involves A;
+* = 'T': the linear system involves A**T.
+*
+* M (input) INTEGER
+* The number of rows of the matrix A. M >= 0.
+*
+* N (input) INTEGER
+* The number of columns of the matrix A. N >= 0.
+*
+* NRHS (input) INTEGER
+* The number of right hand sides, i.e., the number of
+* columns of the matrices B and X. NRHS >=0.
+*
+* A (input/output) DOUBLE PRECISION array, dimension (LDA,N)
+* On entry, the M-by-N matrix A.
+* On exit,
+* if M >= N, A is overwritten by details of its QR
+* factorization as returned by DGEQRF;
+* if M < N, A is overwritten by details of its LQ
+* factorization as returned by DGELQF.
+*
+* LDA (input) INTEGER
+* The leading dimension of the array A. LDA >= max(1,M).
+*
+* B (input/output) DOUBLE PRECISION array, dimension (LDB,NRHS)
+* On entry, the matrix B of right hand side vectors, stored
+* columnwise; B is M-by-NRHS if TRANS = 'N', or N-by-NRHS
+* if TRANS = 'T'.
+* On exit, if INFO = 0, B is overwritten by the solution
+* vectors, stored columnwise:
+* if TRANS = 'N' and m >= n, rows 1 to n of B contain the least
+* squares solution vectors; the residual sum of squares for the
+* solution in each column is given by the sum of squares of
+* elements N+1 to M in that column;
+* if TRANS = 'N' and m < n, rows 1 to N of B contain the
+* minimum norm solution vectors;
+* if TRANS = 'T' and m >= n, rows 1 to M of B contain the
+* minimum norm solution vectors;
+* if TRANS = 'T' and m < n, rows 1 to M of B contain the
+* least squares solution vectors; the residual sum of squares
+* for the solution in each column is given by the sum of
+* squares of elements M+1 to N in that column.
+*
+* LDB (input) INTEGER
+* The leading dimension of the array B. LDB >= MAX(1,M,N).
+*
+* WORK (workspace/output) DOUBLE PRECISION array, dimension (MAX(1,LWORK))
+* On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
+*
+* LWORK (input) INTEGER
+* The dimension of the array WORK.
+* LWORK >= max( 1, MN + max( MN, NRHS ) ).
+* For optimal performance,
+* LWORK >= max( 1, MN + max( MN, NRHS )*NB ).
+* where MN = min(M,N) and NB is the optimum block size.
+*
+* If LWORK = -1, then a workspace query is assumed; the routine
+* only calculates the optimal size of the WORK array, returns
+* this value as the first entry of the WORK array, and no error
+* message related to LWORK is issued by XERBLA.
+*
+* INFO (output) INTEGER
+* = 0: successful exit
+* < 0: if INFO = -i, the i-th argument had an illegal value
+* > 0: if INFO = i, the i-th diagonal element of the
+* triangular factor of A is zero, so that A does not have
+* full rank; the least squares solution could not be
+* computed.
+*
+* =====================================================================
+*
+* .. Parameters ..
+ DOUBLE PRECISION ZERO, ONE
+ PARAMETER ( ZERO = 0.0D0, ONE = 1.0D0 )
+* ..
+* .. Local Scalars ..
+ LOGICAL LQUERY, TPSD
+ INTEGER BROW, I, IASCL, IBSCL, J, MN, NB, SCLLEN, WSIZE
+ DOUBLE PRECISION ANRM, BIGNUM, BNRM, SMLNUM
+* ..
+* .. Local Arrays ..
+ DOUBLE PRECISION RWORK( 1 )
+* ..
+* .. External Functions ..
+ LOGICAL LSAME
+ INTEGER ILAENV
+ DOUBLE PRECISION DLAMCH, DLANGE
+ EXTERNAL LSAME, ILAENV, DLABAD, DLAMCH, DLANGE
+* ..
+* .. External Subroutines ..
+ EXTERNAL DGELQF, DGEQRF, DLASCL, DLASET, DORMLQ, DORMQR,
+ $ DTRTRS, XERBLA
+* ..
+* .. Intrinsic Functions ..
+ INTRINSIC DBLE, MAX, MIN
+* ..
+* .. Executable Statements ..
+*
+* Test the input arguments.
+*
+ INFO = 0
+ MN = MIN( M, N )
+ LQUERY = ( LWORK.EQ.-1 )
+ IF( .NOT.( LSAME( TRANS, 'N' ) .OR. LSAME( TRANS, 'T' ) ) ) THEN
+ INFO = -1
+ ELSE IF( M.LT.0 ) THEN
+ INFO = -2
+ ELSE IF( N.LT.0 ) THEN
+ INFO = -3
+ ELSE IF( NRHS.LT.0 ) THEN
+ INFO = -4
+ ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
+ INFO = -6
+ ELSE IF( LDB.LT.MAX( 1, M, N ) ) THEN
+ INFO = -8
+ ELSE IF( LWORK.LT.MAX( 1, MN+MAX( MN, NRHS ) ) .AND. .NOT.LQUERY )
+ $ THEN
+ INFO = -10
+ END IF
+*
+* Figure out optimal block size
+*
+ IF( INFO.EQ.0 .OR. INFO.EQ.-10 ) THEN
+*
+ TPSD = .TRUE.
+ IF( LSAME( TRANS, 'N' ) )
+ $ TPSD = .FALSE.
+*
+ IF( M.GE.N ) THEN
+ NB = ILAENV( 1, 'DGEQRF', ' ', M, N, -1, -1 )
+ IF( TPSD ) THEN
+ NB = MAX( NB, ILAENV( 1, 'DORMQR', 'LN', M, NRHS, N,
+ $ -1 ) )
+ ELSE
+ NB = MAX( NB, ILAENV( 1, 'DORMQR', 'LT', M, NRHS, N,
+ $ -1 ) )
+ END IF
+ ELSE
+ NB = ILAENV( 1, 'DGELQF', ' ', M, N, -1, -1 )
+ IF( TPSD ) THEN
+ NB = MAX( NB, ILAENV( 1, 'DORMLQ', 'LT', N, NRHS, M,
+ $ -1 ) )
+ ELSE
+ NB = MAX( NB, ILAENV( 1, 'DORMLQ', 'LN', N, NRHS, M,
+ $ -1 ) )
+ END IF
+ END IF
+*
+ WSIZE = MAX( 1, MN+MAX( MN, NRHS )*NB )
+ WORK( 1 ) = DBLE( WSIZE )
+*
+ END IF
+*
+ IF( INFO.NE.0 ) THEN
+ CALL XERBLA( 'DGELS ', -INFO )
+ RETURN
+ ELSE IF( LQUERY ) THEN
+ RETURN
+ END IF
+*
+* Quick return if possible
+*
+ IF( MIN( M, N, NRHS ).EQ.0 ) THEN
+ CALL DLASET( 'Full', MAX( M, N ), NRHS, ZERO, ZERO, B, LDB )
+ RETURN
+ END IF
+*
+* Get machine parameters
+*
+ SMLNUM = DLAMCH( 'S' ) / DLAMCH( 'P' )
+ BIGNUM = ONE / SMLNUM
+ CALL DLABAD( SMLNUM, BIGNUM )
+*
+* Scale A, B if max element outside range [SMLNUM,BIGNUM]
+*
+ ANRM = DLANGE( 'M', M, N, A, LDA, RWORK )
+ IASCL = 0
+ IF( ANRM.GT.ZERO .AND. ANRM.LT.SMLNUM ) THEN
+*
+* Scale matrix norm up to SMLNUM
+*
+ CALL DLASCL( 'G', 0, 0, ANRM, SMLNUM, M, N, A, LDA, INFO )
+ IASCL = 1
+ ELSE IF( ANRM.GT.BIGNUM ) THEN
+*
+* Scale matrix norm down to BIGNUM
+*
+ CALL DLASCL( 'G', 0, 0, ANRM, BIGNUM, M, N, A, LDA, INFO )
+ IASCL = 2
+ ELSE IF( ANRM.EQ.ZERO ) THEN
+*
+* Matrix all zero. Return zero solution.
+*
+ CALL DLASET( 'F', MAX( M, N ), NRHS, ZERO, ZERO, B, LDB )
+ GO TO 50
+ END IF
+*
+ BROW = M
+ IF( TPSD )
+ $ BROW = N
+ BNRM = DLANGE( 'M', BROW, NRHS, B, LDB, RWORK )
+ IBSCL = 0
+ IF( BNRM.GT.ZERO .AND. BNRM.LT.SMLNUM ) THEN
+*
+* Scale matrix norm up to SMLNUM
+*
+ CALL DLASCL( 'G', 0, 0, BNRM, SMLNUM, BROW, NRHS, B, LDB,
+ $ INFO )
+ IBSCL = 1
+ ELSE IF( BNRM.GT.BIGNUM ) THEN
+*
+* Scale matrix norm down to BIGNUM
+*
+ CALL DLASCL( 'G', 0, 0, BNRM, BIGNUM, BROW, NRHS, B, LDB,
+ $ INFO )
+ IBSCL = 2
+ END IF
+*
+ IF( M.GE.N ) THEN
+*
+* compute QR factorization of A
+*
+ CALL DGEQRF( M, N, A, LDA, WORK( 1 ), WORK( MN+1 ), LWORK-MN,
+ $ INFO )
+*
+* workspace at least N, optimally N*NB
+*
+ IF( .NOT.TPSD ) THEN
+*
+* Least-Squares Problem min || A * X - B ||
+*
+* B(1:M,1:NRHS) := Q' * B(1:M,1:NRHS)
+*
+ CALL DORMQR( 'Left', 'Transpose', M, NRHS, N, A, LDA,
+ $ WORK( 1 ), B, LDB, WORK( MN+1 ), LWORK-MN,
+ $ INFO )
+*
+* workspace at least NRHS, optimally NRHS*NB
+*
+* B(1:N,1:NRHS) := inv(R) * B(1:N,1:NRHS)
+*
+ CALL DTRTRS( 'Upper', 'No transpose', 'Non-unit', N, NRHS,
+ $ A, LDA, B, LDB, INFO )
+*
+ IF( INFO.GT.0 ) THEN
+ RETURN
+ END IF
+*
+ SCLLEN = N
+*
+ ELSE
+*
+* Overdetermined system of equations A' * X = B
+*
+* B(1:N,1:NRHS) := inv(R') * B(1:N,1:NRHS)
+*
+ CALL DTRTRS( 'Upper', 'Transpose', 'Non-unit', N, NRHS,
+ $ A, LDA, B, LDB, INFO )
+*
+ IF( INFO.GT.0 ) THEN
+ RETURN
+ END IF
+*
+* B(N+1:M,1:NRHS) = ZERO
+*
+ DO 20 J = 1, NRHS
+ DO 10 I = N + 1, M
+ B( I, J ) = ZERO
+ 10 CONTINUE
+ 20 CONTINUE
+*
+* B(1:M,1:NRHS) := Q(1:N,:) * B(1:N,1:NRHS)
+*
+ CALL DORMQR( 'Left', 'No transpose', M, NRHS, N, A, LDA,
+ $ WORK( 1 ), B, LDB, WORK( MN+1 ), LWORK-MN,
+ $ INFO )
+*
+* workspace at least NRHS, optimally NRHS*NB
+*
+ SCLLEN = M
+*
+ END IF
+*
+ ELSE
+*
+* Compute LQ factorization of A
+*
+ CALL DGELQF( M, N, A, LDA, WORK( 1 ), WORK( MN+1 ), LWORK-MN,
+ $ INFO )
+*
+* workspace at least M, optimally M*NB.
+*
+ IF( .NOT.TPSD ) THEN
+*
+* underdetermined system of equations A * X = B
+*
+* B(1:M,1:NRHS) := inv(L) * B(1:M,1:NRHS)
+*
+ CALL DTRTRS( 'Lower', 'No transpose', 'Non-unit', M, NRHS,
+ $ A, LDA, B, LDB, INFO )
+*
+ IF( INFO.GT.0 ) THEN
+ RETURN
+ END IF
+*
+* B(M+1:N,1:NRHS) = 0
+*
+ DO 40 J = 1, NRHS
+ DO 30 I = M + 1, N
+ B( I, J ) = ZERO
+ 30 CONTINUE
+ 40 CONTINUE
+*
+* B(1:N,1:NRHS) := Q(1:N,:)' * B(1:M,1:NRHS)
+*
+ CALL DORMLQ( 'Left', 'Transpose', N, NRHS, M, A, LDA,
+ $ WORK( 1 ), B, LDB, WORK( MN+1 ), LWORK-MN,
+ $ INFO )
+*
+* workspace at least NRHS, optimally NRHS*NB
+*
+ SCLLEN = N
+*
+ ELSE
+*
+* overdetermined system min || A' * X - B ||
+*
+* B(1:N,1:NRHS) := Q * B(1:N,1:NRHS)
+*
+ CALL DORMLQ( 'Left', 'No transpose', N, NRHS, M, A, LDA,
+ $ WORK( 1 ), B, LDB, WORK( MN+1 ), LWORK-MN,
+ $ INFO )
+*
+* workspace at least NRHS, optimally NRHS*NB
+*
+* B(1:M,1:NRHS) := inv(L') * B(1:M,1:NRHS)
+*
+ CALL DTRTRS( 'Lower', 'Transpose', 'Non-unit', M, NRHS,
+ $ A, LDA, B, LDB, INFO )
+*
+ IF( INFO.GT.0 ) THEN
+ RETURN
+ END IF
+*
+ SCLLEN = M
+*
+ END IF
+*
+ END IF
+*
+* Undo scaling
+*
+ IF( IASCL.EQ.1 ) THEN
+ CALL DLASCL( 'G', 0, 0, ANRM, SMLNUM, SCLLEN, NRHS, B, LDB,
+ $ INFO )
+ ELSE IF( IASCL.EQ.2 ) THEN
+ CALL DLASCL( 'G', 0, 0, ANRM, BIGNUM, SCLLEN, NRHS, B, LDB,
+ $ INFO )
+ END IF
+ IF( IBSCL.EQ.1 ) THEN
+ CALL DLASCL( 'G', 0, 0, SMLNUM, BNRM, SCLLEN, NRHS, B, LDB,
+ $ INFO )
+ ELSE IF( IBSCL.EQ.2 ) THEN
+ CALL DLASCL( 'G', 0, 0, BIGNUM, BNRM, SCLLEN, NRHS, B, LDB,
+ $ INFO )
+ END IF
+*
+ 50 CONTINUE
+ WORK( 1 ) = DBLE( WSIZE )
+*
+ RETURN
+*
+* End of DGELS
+*
+ END